Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jan;122(1):60-3.
doi: 10.1055/s-0033-1361097. Epub 2014 Jan 24.

CYP2C9*2 allele increases risk for hypoglycemia in POR*1/*1 type 2 diabetic patients treated with sulfonylureas

Affiliations

CYP2C9*2 allele increases risk for hypoglycemia in POR*1/*1 type 2 diabetic patients treated with sulfonylureas

G Ragia et al. Exp Clin Endocrinol Diabetes. 2014 Jan.

Abstract

It is previously shown that carriers of the defective allele CYP2C9*3 that leads to impaired sulfonylurea metabolism are at increased sulfonylurea-induced hypoglycemia risk due to diminished drug metabolism, whereas no effect of CYP2C9*2 allele was found. Recently, a polymorphism in P450 oxidoreductase (POR) gene, assigned as POR*28 allele, was associated with increased CYP2C9 activity. The aim of this study was to assess i) the effect of POR*28 allele on sulfonylurea-induced hypoglycemia risk and ii) the association of CYP2C9*2 allele with hypoglycemia risk in non-carriers of POR*28 allele. The study group consisted of 176 patients with diagnosed type 2 diabetes mellitus (T2DM) treated with sulfonylureas, of whom 92 patients had experienced at least one drug-associated hypoglycemic event (cases), while 84 had never experienced a hypoglycemic event (controls). POR*28 allele was detected by use of real-time TaqMan PCR. POR*28 allele was not associated with sulfonyl-urea-induced hypoglycemia. In POR*1/*1 patients, CYP2C9*1/*2 genotype was more common in cases than in controls (32.7 vs. 14.3%, p=0.041). In a model adjusted for age, BMI, duration of T2DM and renal function, and POR*1/*1 entered as a selection variable, CYP2C9*2 allele increased the hypoglycemia risk in response to sulfonylurea (odds ratio: 3.218, p=0.031). In conclusion, our results suggest that POR*28 allele is masking the association of CYP2C9*2 allele with sulfonyl-urea-induced hypoglycemia. Therefore, POR*28 allele is an important source of CYP2C9 activity variability and combined with CYP2C9 gene poly-morphisms may explain individual variability in the effect of sulfonylureas.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources