VBA: a probabilistic treatment of nonlinear models for neurobiological and behavioural data
- PMID: 24465198
- PMCID: PMC3900378
- DOI: 10.1371/journal.pcbi.1003441
VBA: a probabilistic treatment of nonlinear models for neurobiological and behavioural data
Abstract
This work is in line with an on-going effort tending toward a computational (quantitative and refutable) understanding of human neuro-cognitive processes. Many sophisticated models for behavioural and neurobiological data have flourished during the past decade. Most of these models are partly unspecified (i.e. they have unknown parameters) and nonlinear. This makes them difficult to peer with a formal statistical data analysis framework. In turn, this compromises the reproducibility of model-based empirical studies. This work exposes a software toolbox that provides generic, efficient and robust probabilistic solutions to the three problems of model-based analysis of empirical data: (i) data simulation, (ii) parameter estimation/model selection, and (iii) experimental design optimization.
Conflict of interest statement
The authors have declared that no competing interests exist.
Figures





































Similar articles
-
Automated parameter estimation for biological models using Bayesian statistical model checking.BMC Bioinformatics. 2015;16 Suppl 17(Suppl 17):S8. doi: 10.1186/1471-2105-16-S17-S8. Epub 2015 Dec 7. BMC Bioinformatics. 2015. PMID: 26679759 Free PMC article.
-
Globally multimodal problem optimization via an estimation of distribution algorithm based on unsupervised learning of Bayesian networks.Evol Comput. 2005 Spring;13(1):43-66. doi: 10.1162/1063656053583432. Evol Comput. 2005. PMID: 15901426
-
Goal-directed decision making as probabilistic inference: a computational framework and potential neural correlates.Psychol Rev. 2012 Jan;119(1):120-54. doi: 10.1037/a0026435. Psychol Rev. 2012. PMID: 22229491 Free PMC article.
-
Global optimization in systems biology: stochastic methods and their applications.Adv Exp Med Biol. 2012;736:409-24. doi: 10.1007/978-1-4419-7210-1_24. Adv Exp Med Biol. 2012. PMID: 22161343
-
Probabilistic inference in general graphical models through sampling in stochastic networks of spiking neurons.PLoS Comput Biol. 2011 Dec;7(12):e1002294. doi: 10.1371/journal.pcbi.1002294. Epub 2011 Dec 15. PLoS Comput Biol. 2011. PMID: 22219717 Free PMC article.
Cited by
-
The virtual loss function in the summary perception of motion and its limited adjustability.J Vis. 2021 May 3;21(5):2. doi: 10.1167/jov.21.5.2. J Vis. 2021. PMID: 33944907 Free PMC article.
-
Comparing continual task learning in minds and machines.Proc Natl Acad Sci U S A. 2018 Oct 30;115(44):E10313-E10322. doi: 10.1073/pnas.1800755115. Epub 2018 Oct 15. Proc Natl Acad Sci U S A. 2018. PMID: 30322916 Free PMC article.
-
Mood fluctuations shift cost-benefit tradeoffs in economic decisions.Sci Rep. 2023 Oct 24;13(1):18173. doi: 10.1038/s41598-023-45217-w. Sci Rep. 2023. PMID: 37875525 Free PMC article.
-
Neuro-computational account of how mood fluctuations arise and affect decision making.Nat Commun. 2018 Apr 26;9(1):1708. doi: 10.1038/s41467-018-03774-z. Nat Commun. 2018. PMID: 29700303 Free PMC article.
-
Contextual modulation of value signals in reward and punishment learning.Nat Commun. 2015 Aug 25;6:8096. doi: 10.1038/ncomms9096. Nat Commun. 2015. PMID: 26302782 Free PMC article.
References
-
- Schmidt A, Smieskova R, Aston J, Simon A, Allen P, et al.. (2013) Brain connectivity abnormalities predating the onset of psychosis: correlation with the effect of medication. JAMA Psychiatry 70(9): 903–12. - PubMed
-
- Daunizeau J, David O, Stephan KE (2011) Dynamic causal modeling: a critical review of the biophysical and statistical foundations. NeuroImage 58(2): 312–22. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous