Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jan 21;9(1):e85687.
doi: 10.1371/journal.pone.0085687. eCollection 2014.

Pch2 prevents Mec1/Tel1-mediated Hop1 phosphorylation occurring independently of Red1 in budding yeast meiosis

Affiliations

Pch2 prevents Mec1/Tel1-mediated Hop1 phosphorylation occurring independently of Red1 in budding yeast meiosis

Yu-Hui Lo et al. PLoS One. .

Abstract

A prominent feature of meiosis in most sexually reproducing organisms is interhomolog recombination whereby a significant fraction of the programmed meiotic double-strand breaks are repaired using intact homologous non-sister chromatids rather than sister chromatids. Budding yeast DNA damage checkpoint kinases Mec1 and Tel1 act together with the axial element protein Red1 to promote interhomolog recombination by phosphorylating another axial element protein Hop1. Mec1 and Tel1 also phosphorylate γH2A and the synaptonemal complex protein Zip1 independently of Red1 to facilitate premeiotic DNA replication and to destabilize homology-independent centromere pairing, respectively. It has been unclear why Hop1 phosphorylation is Red1-dependent. Here, we report that the pachytene checkpoint protein 2 (Pch2) specifically prevents Red1-independent Hop1 phosphorylation. Our findings reveal a new function for Pch2 in linking two axial element proteins Red1 and Hop1 thus coordinating their effects in meiotic recombination and the checkpoint network.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. PCH2 specifically prevents Mec1/Tel1-mediated Hop1 hypophosphorylation in WT and red1Δ.
(A) Western blot time-course analyses of phosphorylated Hop1-T318, Zip1-S75, H2A-S129 and Rad54-T132 in sporulating cells were performed as recently described , . Hsp104 was used as a loading control. All experiments were repeated twice, and the results of representative sporulation time courses are shown. Hyperphosphorylated Hop1 and hypophosphorylated Hop1 are indicated with black and white arrows, respectively. (B) Quantification of phosphorylated protein in (A) (see Materials & Methods). Relative levels of phosphorylated proteins were determined by setting the level of WT “5 hr” as 1.
Figure 2
Figure 2. Rec8 and the catalytic subunit of PP4, Pph3, do not affect Red1-independent Hop1 phosphorylation.
(A) Western blot time-course analyses were performed as described in Figure 1. To validate the specificity of antisera against phosphorylated Hop1-T318, total meitoic cell lysates from strains carrying the wild-type (WT) HOP1 allele (at 5 hr) and the hop1T318A mutant allele (at 5 hr) were used as positive and negative controls, respectively. The hop1T318A variant encodes a mutant protein in which the T318 residue of Hop1 has been mutated to alanine. (B) Quantification of phosphorylated protein in (A). Relative levels of phosphorylated proteins were determined by setting the level of WT “5 hr” as 1.
Figure 3
Figure 3. Neither dot1Δ nor xrs2ΔN can recapitulate the effects of pch2Δ on preventing Red1-independent Hop1-T318 phosphorylation.
(A) Western blot time-course analyses were performed as described in Figure 1. (B) Quantification of phosphorylated protein in (A). Relative levels of phosphorylated proteins were determined by setting the level of red1Δ pch2Δ “5 hr” as 1.

Similar articles

Cited by

References

    1. Gobbini E, Cesena D, Galbiati A, Lockhart A, Longhese MP (2013) Interplays between ATM/Tel1 and ATR/Mec1 in sensing and signaling DNA double-strand breaks. DNA Repair 12: 791–799. - PubMed
    1. Szilard RK, Jacques PE, Laramee L, Cheng B, Galicia S, et al. (2010) Systematic identification of fragile sites via genome-wide location analysis of γH2AX. Nat Struct Mol Biol 17: 299–305. - PMC - PubMed
    1. Carballo JA, Cha RS (2007) Meiotic roles of Mec1, a budding yeast homolog of mammalian ATR/ATM. Chromosome Res 15: 539–550. - PubMed
    1. Chen SH, Albuquerque CP, Liang J, Suhandynata RT, Zhou H (2010) A proteome-wide analysis of kinase-substrate network in the DNA damage response. J Biol Chem 285: 12803–12812. - PMC - PubMed
    1. Roeder GS (1997) Meiotic chromosomes: it takes two to tango. Genes Dev 11: 2600–2621. - PubMed

Publication types

MeSH terms

Substances