Divergent phenotypes in mutant TDP-43 transgenic mice highlight potential confounds in TDP-43 transgenic modeling
- PMID: 24466128
- PMCID: PMC3899264
- DOI: 10.1371/journal.pone.0086513
Divergent phenotypes in mutant TDP-43 transgenic mice highlight potential confounds in TDP-43 transgenic modeling
Abstract
The majority of cases of frontotemporal lobar degeneration and amyotrophic lateral sclerosis are pathologically defined by the cleavage, cytoplasmic redistribution and aggregation of TAR DNA binding protein of 43 kDa (TDP-43). To examine the contribution of these potentially toxic mechanisms in vivo, we generated transgenic mice expressing human TDP-43 containing the familial amyotrophic lateral sclerosis-linked M337V mutation and identified two lines that developed neurological phenotypes of differing severity and progression. The first developed a rapid cortical neurodegenerative phenotype in the early postnatal period, characterized by fragmentation of TDP-43 and loss of endogenous murine Tdp-43, but entirely lacking aggregates of ubiquitin or TDP-43. A second, low expressing line was aged to 25 months without a severe neurodegenerative phenotype, despite a 30% loss of mouse Tdp-43 and accumulation of lower molecular weight TDP-43 species. Furthermore, TDP-43 fragments generated during neurodegeneration were not C-terminal, but rather were derived from a central portion of human TDP-43. Thus we find that aggregation is not required for cell loss, loss of murine Tdp-43 is not necessarily sufficient in order to develop a severe neurodegenerative phenotype and lower molecular weight TDP-43 positive species in mouse models should not be inherently assumed to be representative of human disease. Our findings are significant for the interpretation of other transgenic studies of TDP-43 proteinopathy.
Conflict of interest statement
Figures





References
-
- Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, et al. (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314: 130–133. - PubMed
-
- Buratti E, Brindisi A, Giombi M, Tisminetzky S, Ayala YM, et al. (2005) TDP-43 binds heterogeneous nuclear ribonucleoprotein A/B through its C-terminal tail: an important region for the inhibition of cystic fibrosis transmembrane conductance regulator exon 9 splicing. The Journal of biological chemistry 280: 37572–37584. - PubMed
-
- Yamashita T, Hideyama T, Hachiga K, Teramoto S, Takano J, et al. (2012) A role for calpain-dependent cleavage of TDP-43 in amyotrophic lateral sclerosis pathology. Nature communications 3: 1307. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases