Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Jul-Aug;47(4):568-82.
doi: 10.7868/s0026898413040149.

[Characterization of some thiol oxidoreductase family members]

[Article in Russian]
Free article
Review

[Characterization of some thiol oxidoreductase family members]

[Article in Russian]
E G Varlamova et al. Mol Biol (Mosk). 2013 Jul-Aug.
Free article

Abstract

There are no doubt about the important role of free radicals and reactive oxygen species in the processes of cell activity. The disturbances of intracellular redox processes are often accompanied with the development of such common pathologies as diabetes, myocardial infarction, neurodegeneration, broncho-pulmonary diseases, cancer, etc. To date, there are a large number of antioxidant enzymes related to different redox biology systems, the key role among them is played by enzymes belong to the thiol oxidoreductases superfamily, which consists of thioredoxin, glutaredoxin, peroxiredoxin, protein disulfidizomeraz, glutathione peroxidase families, and a number of other proteins. In addition to the antioxidant function, thiol oxidoreductases display the ability to recycle of hydroperoxide to form specific disulfide bonds within and between proteins that significantly extends the range of their functionality. Therefore, biochemical characterization and elucidation of functional mechanisms of the superfamily proteins is a highly actual problem of redox biology.

PubMed Disclaimer

MeSH terms

LinkOut - more resources