Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Mar;16(2):299-310.
doi: 10.1208/s12248-014-9561-3. Epub 2014 Jan 28.

Ethinyl estradiol and other human pharmaceutical estrogens in the aquatic environment: a review of recent risk assessment data

Affiliations
Review

Ethinyl estradiol and other human pharmaceutical estrogens in the aquatic environment: a review of recent risk assessment data

James P Laurenson et al. AAPS J. 2014 Mar.

Abstract

Interest in pharmaceuticals in the environment has increased substantially in recent years. Several studies in particular have assessed human and ecological risks from human pharmaceutical estrogens, such as 17α-ethinyl estradiol (EE2). Regulatory action also has increased, with the USA and other countries developing rules to address estrogens and other pharmaceuticals in the environment. Accordingly, the Center for Drug Evaluation and Research at the US Food and Drug Administration has conducted a review and analysis of current data on the long-term ecological exposure and effects of EE2 and other estrogens. The results indicate that mean-flow long-term predicted environmental concentrations (PECs) of EE2 in approximately 99% or more of US surface water segments downstream of wastewater treatment plants are lower than a predicted no-effect concentration (PNEC) for aquatic chronic toxicity of 0.1 ng/L. Exceedances are expected to be primarily in localized, effluent-dominated water segments. The median mean-flow PEC is more than two orders of magnitude lower than this PNEC. Similar results exist for other pharmaceutical estrogens. Data also suggest that the contribution of EE2 more broadly to total estrogenic load in the environment from all sources (including other human pharmaceutical estrogens, endogenous estrogens, natural environmental estrogens, and industrial chemicals), while highly uncertain and variable, appears to be relatively low overall. Additional data and a more comprehensive approach for data collection and analysis for estrogenic substances in the environment, especially in effluent-dominated water segments in sensitive environments, would more fully characterize the risks.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Daughton CG. Published literature relevant to the issues surrounding PPCPs as environmental contaminants. In: EPA US (eds). http://www.epa.gov/ppcp/lit.html. 2012 .
    1. Brooks BW, Berninger JP, Kristofco LA, Ramirez AJ, Stanley JK, Valenti TW. Pharmaceuticals in the environment: lessons learned for reducing uncertainties in environmental risk assessment. Prog Mol Biol Transcl Sci. 2012;112:231–58. doi: 10.1016/B978-0-12-415813-9.00008-8. - DOI - PubMed
    1. UNEP. State of the science of endocrine disrupting chemicals examined in landmark UN report. UNEP News Centre. 2013. http://www.unep.org/newscentre/Default.aspx?DocumentID=2704&ArticleID=94...; http://unep.org/pdf/9789241505031_eng.pdf.
    1. USFDA. National Environmental Policy Act; Revision of Policies and Procedures; final rule. Federal Register; 1997.
    1. Wise A, O’Brien K, Woodruff T. Are oral contraceptives a significant contributor to the estrogenicity of drinking water? Environ Sci Technol. 2011;45(1):51–60. doi: 10.1021/es1014482. - DOI - PubMed