Gene-education interactions identify novel blood pressure loci in the Framingham Heart Study
- PMID: 24473254
- PMCID: PMC3915746
- DOI: 10.1093/ajh/hpt283
Gene-education interactions identify novel blood pressure loci in the Framingham Heart Study
Erratum in
- Am J Hypertens. 2014 Nov;27(11):1432
Abstract
Background: Blood pressure (BP) variability has a genetic component, most of which has yet to be attributed to specific variants. One promising strategy for gene discovery is analysis of interactions between single-nucleotide polymorphisms (SNPs) and BP-related factors, including age, sex, and body mass index (BMI). Educational attainment, a marker for socioeconomic status, has effects on both BP and BMI.
Methods: We investigated SNP-education interaction effects on BP in genome-wide data on 3,836 subjects in families from the Framingham Heart Study. The ABEL suite was used to adjust for age, sex, BMI, medication use, and kinship and to perform 1 degree-of-freedrom (df) and 2 df SNP-education interaction tests.
Results: An SNP in PTN was associated with increased systolic BP (5.4mm Hg per minor allele) in those without a bachelor's degree but decreased systolic BP (1.6mm Hg per allele) in those with a bachelor's degree (2 df; P = 2.08 × 10(-8)). An SNP in TOX2 was associated with increased diastolic BP (DBP; 4.1mm Hg per minor allele) in those with no more educational attainment than high school but decreased DBP in those with education past high school (-0.7; 1 df; P = 3.74 × 10(-8)). Three suggestive associations were also found: in MYO16 (pulse pressure: 2 df; P = 2.89 × 10(-7)), in HAS2 (DBP: 1 df; P = 1.41 × 10(-7)), and in DLEU2 (DBP: 2 df; P = 1.93 × 10(-7)). All 5 genes are related to BP, including roles in vasodilation and angiogenesis for PTN and TOX2.
Conclusions: PTN and TOX2 are associated with BP. Analyzing SNP-education interactions may detect novel associations. Education may be a surrogate for unmeasured exposures and behaviors modifying SNP effects on BP.
Keywords: GWAS; blood pressure; educational attainment; gene–education interaction; hypertension; interaction..
Figures
References
-
- Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, Amann M, Anderson HR, Andrews KG, Aryee M, Atkinson C, Bacchus LJ, Bahalim AN, Balakrishnan K, Balmes J, Barker-Collo S, Baxter A, Bell ML, Blore JD, Blyth F, Bonner C, Borges G, Bourne R, Boussinesq M, Brauer M, Brooks P, Bruce NG, Brunekreef B, Bryan-Hancock C, Bucello C, Buchbinder R, Bull F, Burnett RT, Byers TE, Calabria B, Carapetis J, Carnahan E, Chafe Z, Charlson F, Chen H, Chen JS, Cheng AT, Child JC, Cohen A, Colson KE, Cowie BC, Darby S, Darling S, Davis A, Degenhardt L, Dentener F, Des Jarlais DC, Devries K, Dherani M, Ding EL, Dorsey ER, Driscoll T, Edmond K, Ali SE, Engell RE, Erwin PJ, Fahimi S, Falder G, Farzadfar F, Ferrari A, Finucane MM, Flaxman S, Fowkes FG, Freedman G, Freeman MK, Gakidou E, Ghosh S, Giovannucci E, Gmel G, Graham K, Grainger R, Grant B, Gunnell D, Gutierrez HR, Hall W, Hoek HW, Hogan A, Hosgood HD, 3rd, Hoy D, Hu H, Hubbell BJ, Hutchings SJ, Ibeanusi SE, Jacklyn GL, Jasrasaria R, Jonas JB, Kan H, Kanis JA, Kassebaum N, Kawakami N, Khang YH, Khatibzadeh S, Khoo JP, Kok C, Laden F, Lalloo R, Lan Q, Lathlean T, Leasher JL, Leigh J, Li Y, Lin JK, Lipshultz SE, London S, Lozano R, Lu Y, Mak J, Malekzadeh R, Mallinger L, Marcenes W, March L, Marks R, Martin R, McGale P, McGrath J, Mehta S, Mensah GA, Merriman TR, Micha R, Michaud C, Mishra V, Mohd Hanafiah K, Mokdad AA, Morawska L, Mozaffarian D, Murphy T, Naghavi M, Neal B, Nelson PK, Nolla JM, Norman R, Olives C, Omer SB, Orchard J, Osborne R, Ostro B, Page A, Pandey KD, Parry CD, Passmore E, Patra J, Pearce N, Pelizzari PM, Petzold M, Phillips MR, Pope D, Pope CA, 3rd, Powles J, Rao M, Razavi H, Rehfuess EA, Rehm JT, Ritz B, Rivara FP, Roberts T, Robinson C, Rodriguez-Portales JA, Romieu I, Room R, Rosenfeld LC, Roy A, Rushton L, Salomon JA, Sampson U, Sanchez-Riera L, Sanman E, Sapkota A, Seedat S, Shi P, Shield K, Shivakoti R, Singh GM, Sleet DA, Smith E, Smith KR, Stapelberg NJ, Steenland K, Stockl H, Stovner LJ, Straif K, Straney L, Thurston GD, Tran JH, Van Dingenen R, van Donkelaar A, Veerman JL, Vijayakumar L, Weintraub R, Weissman MM, White RA, Whiteford H, Wiersma ST, Wilkinson JD, Williams HC, Williams W, Wilson N, Woolf AD, Yip P, Zielinski JM, Lopez AD, Murray CJ, Ezzati M, AlMazroa MA, Memish ZA. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012; 380:2224–2260 - PMC - PubMed
-
- Manolio TA, Collins FS, Cox NJ, Goldstein DB, Hindorff LA, Hunter DJ, McCarthy MI, Ramos EM, Cardon LR, Chakravarti A, Cho JH, Guttmacher AE, Kong A, Kruglyak L, Mardis E, Rotimi CN, Slatkin M, Valle D, Whittemore AS, Boehnke M, Clark AG, Eichler EE, Gibson G, Haines JL, Mackay TF, McCarroll SA, Visscher PM. Finding the missing heritability of complex diseases. Nature 2009; 461:747–753 - PMC - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Miscellaneous
