Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Dec;330(6150):754-8.
doi: 10.1038/330754a0.

Subcellular fractionation of dystrophin to the triads of skeletal muscle

Affiliations

Subcellular fractionation of dystrophin to the triads of skeletal muscle

E P Hoffman et al. Nature. 1987 Dec.

Abstract

Duchenne muscular dystrophy (DMD) is a human X-linked biochemical defect resulting in the progressive wasting of skeletal muscle of affected individuals. It is the most common and is considered to be the most devastating of the muscular dystrophies, affecting about 1 in 3,500 live-born males. The gene that, when defective, results in this disorder was recently isolated. Using the cloned complementary DNA sequences corresponding to the DMD gene, antibodies have been produced that react with a protein species of relative molecular mass (Mr) approximately 400,000 (400K) which was absent in two DMD-affected individuals and in mdx mice. This protein species is called dystrophin because of its identification by molecular-genetic analysis of affected individuals. Here we show that dystrophin is associated with the triadic junctions in skeletal muscle, and is therefore probably involved with Ca2+ homoeostasis. We also show that the approximately 450K ryanodine receptor/sarcoplasmic reticulum Ca2+ channel, which has the large size and subcellular distribution characteristics of dystrophin, is an immunologically distinct protein species.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources