Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1987 Dec;330(6150):760-2.
doi: 10.1038/330760a0.

Activation of a G protein promotes agonist responses to calcium channel ligands

Affiliations

Activation of a G protein promotes agonist responses to calcium channel ligands

R H Scott et al. Nature. 1987 Dec.

Abstract

The activation of a guanine nucleotide binding (G) protein is an essential step in coupling certain receptors to the inhibition of voltage-activated calcium channels. We have previously observed that analogues of GTP potentiate the effect of receptor agonists and inhibit calcium currents in cultured dorsal root ganglion (DRG) neurones. A residual sustained 'L-type' component of the calcium channel current is resistant to inhibition by internal guanosine 5'-O-3-thiotriphosphate (GTP-gamma-S). Because calcium channel antagonists such as D600, nifedipine and diltiazem inhibit L currents, we examined their effect on GTP-gamma-S-modified currents. These compounds all produced a rapid and very marked potentiation of calcium channel currents in the presence of internal GTP-gamma-S and this effect was prevented by pertussis toxin which ADP ribosylates the G proteins Gi/Go (for review see ref. 10). We suggest that this potentiation indicates that activated G protein can interact with the calcium channel, and that this enhances the action of calcium channel ligands at their agonist sites on the channel in its resting state. These results represent the first electrophysiological evidence that guanine nucleotides are able to influence cellular responses to calcium channel ligands.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources