Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013 Dec 24;4(6):150.
doi: 10.1186/scrt380.

Induced pluripotent stem cell-derived cardiomyocytes for cardiovascular disease modeling and drug screening

Review

Induced pluripotent stem cell-derived cardiomyocytes for cardiovascular disease modeling and drug screening

Arun Sharma et al. Stem Cell Res Ther. .

Abstract

Human induced pluripotent stem cells (hiPSCs) have emerged as a novel tool for drug discovery and therapy in cardiovascular medicine. hiPSCs are functionally similar to human embryonic stem cells (hESCs) and can be derived autologously without the ethical challenges associated with hESCs. Given the limited regenerative capacity of the human heart following myocardial injury, cardiomyocytes derived from hiPSCs (hiPSC-CMs) have garnered significant attention from basic and translational scientists as a promising cell source for replacement therapy. However, ongoing issues such as cell immaturity, scale of production, inter-line variability, and cell purity will need to be resolved before human clinical trials can begin. Meanwhile, the use of hiPSCs to explore cellular mechanisms of cardiovascular diseases in vitro has proven to be extremely valuable. For example, hiPSC-CMs have been shown to recapitulate disease phenotypes from patients with monogenic cardiovascular disorders. Furthermore, patient-derived hiPSC-CMs are now providing new insights regarding drug efficacy and toxicity. This review will highlight recent advances in utilizing hiPSC-CMs for cardiac disease modeling in vitro and as a platform for drug validation. The advantages and disadvantages of using hiPSC-CMs for drug screening purposes will be explored as well.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Potential applications of human induced pluripotent stem cell-derived cardiomyocytes towards cardiovascular medicine and therapy. Patient fibroblasts or blood cells are obtained and reprogrammed into human induced pluripotent stem cell (hiPSC) colonies by introduction of pluripotency factors - Oct4, Klf4, Sox2, and c-Myc. Subsequently, hiPSCs are differentiated directly into >95% cardiomyocytes using high efficiency protocols and non-cardiomyocyte depletion strategies. These purified hiPSC cardiomyocytes could then be utilized for autologous cell therapy, in vitro disease modeling, or high throughput drug screening studies. RBC, red blood cell.

References

    1. Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;4:663–676. - PubMed
    1. Chou BK, Mali P, Huang X, Ye Z, Dowey SN, Resar LM, Zou C, Zhang YA, Tong J, Cheng L. Efficient human iPS cell derivation by a non-integrating plasmid from blood cells with unique epigenetic and gene expression signatures. Cell Res. 2011;4:518–529. - PMC - PubMed
    1. Zhou T, Benda C, Dunzinger S, Huang Y, Ho JC, Yang J, Wang Y, Zhang Y, Zhuang Q, Li Y, Bao X, Tse HF, Grillari J, Grillari-Voglauer R, Pei D, Esteban MA. Generation of human induced pluripotent stem cells from urine samples. Nat Protoc. 2012;4:2080–2089. - PubMed
    1. Novak A, Shtrichman R, Germanguz I, Segev H, Zeevi-Levin N, Fishman B, Mandel YE, Barad L, Domev H, Kotton D, Mostoslavsky G, Binah O, Itskovitz-Eldor J. Enhanced reprogramming and cardiac differentiation of human keratinocytes derived from plucked hair follicles, using a single excisable lentivirus. Cell Reprogram. 2010;4:665–678. - PubMed
    1. Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci. 2009;4:348–362. - PMC - PubMed

Publication types

MeSH terms

LinkOut - more resources