Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Jan 27:5:4.
doi: 10.3389/fphar.2014.00004. eCollection 2014.

Advances in targeting the vacuolar proton-translocating ATPase (V-ATPase) for anti-fungal therapy

Affiliations
Review

Advances in targeting the vacuolar proton-translocating ATPase (V-ATPase) for anti-fungal therapy

Summer R Hayek et al. Front Pharmacol. .

Abstract

Vacuolar proton-translocating ATPase (V-ATPase) is a membrane-bound, multi-subunit enzyme that uses the energy of ATP hydrolysis to pump protons across membranes. V-ATPase activity is critical for pH homeostasis and organelle acidification as well as for generation of the membrane potential that drives secondary transporters and cellular metabolism. V-ATPase is highly conserved across species and is best characterized in the model fungus Saccharomyces cerevisiae. However, recent studies in mammals have identified significant alterations from fungi, particularly in the isoform composition of the 14 subunits and in the regulation of complex disassembly. These differences could be exploited for selectivity between fungi and humans and highlight the potential for V-ATPase as an anti-fungal drug target. Candida albicans is a major human fungal pathogen and causes fatality in 35% of systemic infections, even with anti-fungal treatment. The pathogenicity of C. albicans correlates with environmental, vacuolar, and cytoplasmic pH regulation, and V-ATPase appears to play a fundamental role in each of these processes. Genetic loss of V-ATPase in pathogenic fungi leads to defective virulence, and a comprehensive picture of the mechanisms involved is emerging. Recent studies have explored the practical utility of V-ATPase as an anti-fungal drug target in C. albicans, including pharmacological inhibition, azole therapy, and targeting of downstream pathways. This overview will discuss these studies as well as hypothetical ways to target V-ATPase and novel high-throughput methods for use in future drug discovery screens.

Keywords: C. albicans virulence; anti-fungal target; fungal V-ATPase; pH homeostasis; vacuolar acidification; vacuolar proton pump.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
V-ATPase subunit composition and mechanism of catalysis. The V-ATPase proton pump acidifies the lumen of organelles in the endomembrane system of all eukaryotic cells. V-ATPase has 14 subunits that form two domains, V1 and Vo. V1 (clear and gray subunits, A3B3CDE3FG3H) hydrolyzes ATP at the cytosolic side of the membrane, and Vo (blue subunits, ac3-4c’c”de) translocates protons. Transport of protons against a concentration gradient entails a rotational mechanism. Hydrolysis of 3 ATP in the V1A catalytic subunits drives rotation of a shaft (subunits D, F) that penetrates V1 and is bound to a rotating proteolipid ring structure in Vo formed by subunits c(3-4)c’c” (c-ring) that together with subunit Voa forms the path for proton transport. With the exception of subunit Voa, which exists in two isoforms (Vph1p and Stv1p), each V-ATPase subunit is encoded by a single gene in fungi. In contrast, multiple isoforms (two to four) exist for most subunits of the mammalian V-ATPase. Subunit Voc′ is absent in mammals.
FIGURE 2
FIGURE 2
V-ATPase in non-vacuolar organelles (Stv1p-containing complexes) plays a yet unknown role in C. albicans virulence. Wild-type: When functional, V-ATPase-mediated acidification of vacuoles, Golgi, and secretory vesicles maintains organelle pH and supports traffic of Pma1p to the cell surface for proton efflux and maintenance of an alkaline cytosol. VPH1 deficient: C. albicans grows normally at neutral pH when only Vph1p-containing V-ATPase complexes (vacuolar membrane) are missing. Only modest filamentation defects are obvious, despite the concomitant vacuolar alkalinization and defective Pma1p activity (Raines et al., 2013 and unpublished results). VMA3 deficient: Vacuolar alkalinization and defective Pma1p activity occur at levels equal to that of VPH1 deficient cells when all V-ATPase function is missing (Stv1p- and Vph1-containing V-ATPase complexes; Rane et al., 2013 and unpublished results). However, VMA3 deficient C. albicans exhibits growth defects at neutral pH and severely reduced filamentation under these conditions. We therefore hypothesize that the presence of Stv1p-containing V-ATPase in non-vacuolar organelles maintains virulence in the face of defective vacuolar and cytoplasmic pH homeostasis. Pink = acidic/acidified, blue = alkaline/alkalinized.

Similar articles

Cited by

References

    1. Barrett-Bee K., Newboult L., Pinder P. (1991). Biochemical changes associated with the antifungal action of the triazole ICI 153,066 on Candida albicans and Trichophyton quinckeanum. FEMS Microbiol. Lett. 63 127–131 10.1111/j.1574-6968.1991.tb04517.x - DOI - PubMed
    1. Billack B., Santoro M., Lau-Cam C. (2009). Growth inhibitory action of ebselen on fluconazole-resistant Candida albicans: role of the plasma membrane H+-ATPase. Microb. Drug Resist. 15 77–83 10.1089/mdr.2009.0872 - DOI - PubMed
    1. Bouhafs R. K., Jarstrand C. (2002). Effects of antioxidants on surfactant peroxidation by stimulated human polymorphonuclear leukocytes. Free Radic. Res. 36 727–734 10.1080/10715760290032593 - DOI - PubMed
    1. Bowman E. J., Bowman B. J. (2005). V-ATPases as drug targets. J. Bioenerg. Biomembr. 37 431–435 10.1007/s10863-005-9485-9489 - DOI - PubMed
    1. Bowman E. J., O’Neill F. J., Bowman B. J. (1997). Mutations of pma-1, the gene encoding the plasma membrane H+-ATPase of Neurospora crassa, suppress inhibition of growth by concanamycin A, a specific inhibitor of vacuolar ATPases. J. Biol. Chem. 272 14776–14786 10.1074/jbc.272.23.14776 - DOI - PubMed

LinkOut - more resources