Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jan 24:5:2.
doi: 10.3389/fmicb.2014.00002. eCollection 2014.

Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils

Affiliations

Root exudation and root development of lettuce (Lactuca sativa L. cv. Tizian) as affected by different soils

G Neumann et al. Front Microbiol. .

Abstract

Development and activity of plant roots exhibit high adaptive variability. Although it is well-documented, that physicochemical soil properties can strongly influence root morphology and root exudation, particularly under field conditions, a comparative assessment is complicated by the impact of additional factors, such as climate and cropping history. To overcome these limitations, in this study, field soils originating from an unique experimental plot system with three different soil types, which were stored at the same field site for 10 years and exposed to the same agricultural management practice, were used for an investigation on effects of soil type on root development and root exudation. Lettuce (Lactuca sativa L. cv. Tizian) was grown as a model plant under controlled environmental conditions in a minirhizotrone system equipped with root observation windows (rhizoboxes). Root exudates were collected by placing sorption filters onto the root surface followed by subsequent extraction and GC-MS profiling of the trapped compounds. Surprisingly, even in absence of external stress factors with known impact on root exudation, such as pH extremes, water and nutrient limitations/toxicities or soil structure effects (use of sieved soils), root growth characteristics (root length, fine root development) as well as profiles of root exudates were strongly influenced by the soil type used for plant cultivation. The results coincided well with differences in rhizosphere bacterial communities, detected in field-grown lettuce plants cultivated on the same soils (Schreiter et al., this issue). The findings suggest that the observed differences may be the result of plant interactions with the soil-specific microbiomes.

Keywords: lettuce; root exudates; root morphology; soil effects.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Lettuce plants Lactuca sativa L. cv. Tizian (BBCH 19) grown on loess loam. Root observation window of a minirhizotron (rhizobox) prepared for exudate collection with sorption filters (indicated by black arrows).
Figure 2
Figure 2
Principal component analysis (PCA) of the GC-MS root exudate profiles collected from 2 cm-subapical root zones of Lactuca sativa L. cv. Tizian BBCH19 grown on three different soils (Loess loam ; Alluvial loam ▲; Diluvial sand ●).

References

    1. Badri D. V., Vivanco J. M. (2009). Regulation and function of root exudates. Plant Cell Environ. 32, 666–681 10.1111/j.1365-3040.2008.01926.x - DOI - PubMed
    1. Bakker M. G., Manter D. K., Sheflin A. M., Weir T. L., Vivanco J. M. (2012). Harnessing the rhizosphere microbiome through plant breeding and agricultural management. Plant Soil 360, 1–13 10.1007/s11104-012-1361-x - DOI
    1. Berg G. (2009). Plant-microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl. Microbiol. Biotechnol. 84, 11–18 10.1007/s00253-009-2092-7 - DOI - PubMed
    1. Bergmann W. (1988). Ernährungsstörungen bei Kulturpflanzen. 2. Auflage Jena: VEB Gustav Fischer Verlag
    1. Biswas J. C., Ladha J. K., Dazzo F. B. (2000). Rhizobia inoculation improves nutrient uptake and growth of lowland rice. Soil Sci. Soc. Am. J. 64, 1644–1650 10.2136/sssaj2000.6451644x - DOI

LinkOut - more resources