Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Mar-Apr;16(2):169-77.
doi: 10.4103/1008-682X.122590.

Human androgen deficiency: insights gained from androgen receptor knockout mouse models

Affiliations
Review

Human androgen deficiency: insights gained from androgen receptor knockout mouse models

Kesha Rana et al. Asian J Androl. 2014 Mar-Apr.

Abstract

The mechanism of androgen action is complex. Recently, significant advances have been made into our understanding of how androgens act via the androgen receptor (AR) through the use of genetically modified mouse models. A number of global and tissue-specific AR knockout (ARKO) models have been generated using the Cre-loxP system which allows tissue- and/or cell-specific deletion. These ARKO models have examined a number of sites of androgen action including the cardiovascular system, the immune and hemopoetic system, bone, muscle, adipose tissue, the prostate and the brain. This review focuses on the insights that have been gained into human androgen deficiency through the use of ARKO mouse models at each of these sites of action, and highlights the strengths and limitations of these Cre-loxP mouse models that should be considered to ensure accurate interpretation of the phenotype.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Signaling pathways of the androgen receptor (AR). Androgens bind to the AR and (1) regulate gene transcription via DNA binding-dependent (DBD) signaling or (2) activate second messenger pathways or transrepression through non-DBD signaling.
Figure 2
Figure 2
Generation of tissue/cell-specific knockout mice using the Cre-loxP system. In the Cre mouse line, the expression of Cre is under the control of a tissue/cell-specific promoter. The floxed target gene mouse line contains loxP sites (◂) flanking the region of the target gene to be deleted. When the two mouse lines are bred together, the Cre enzyme recognizes the loxP sites and deletes the intervening DNA sequence only in tissues/cells where the Cre is expressed. The target gene remains floxed and theoretically functional, in all other tissues.
Figure 3
Figure 3
3D micro-computed tomography (μCT) images showing that removal of the androgen receptor (AR) in male ARΔZF2 mice results in smaller and thinner bones of decreased density. (a) Cortical and (b) Trabecular bone.
Figure 4
Figure 4
Cross-sectional area of levator ani (LA) muscle from (a) Wildtype (WT), (b) Floxed androgen receptor (AR) and (c) mARΔZF2 male mice. LA muscle mass is reduced by 53% in mARΔZF2 males compared to WT males (P < 0.001).

References

    1. van Weerden WM, Bierings HG, van Steenbrugge GJ, de Jong FH, Schroder FH. Adrenal glands of mouse and rat do not synthesize androgens. Life Sci. 1992;50:857–61. - PubMed
    1. MacLean HE, Warne GL, Zajac JD. Localization of functional domains in the androgen receptor. J Steroid Biochem Mol Biol. 1997;62:233–42. - PubMed
    1. Estrada M, Espinosa A, Muller M, Jaimovich E. Testosterone stimulates intracellular calcium release and mitogen-activated protein kinases via a G protein-coupled receptor in skeletal muscle cells. Endocrinology. 2003;144:3586–97. - PubMed
    1. Kang HY, Cho CL, Huang KL, Wang JC, Hu YC, et al. Nongenomic androgen activation of phosphatidylinositol 3-kinase/Akt signaling pathway in MC3T3-E1 osteoblasts. J Bone Miner Res. 2004;19:1181–90. - PubMed
    1. Kousteni S, Bellido T, Plotkin LI, O’Brien CA, Bodenner DL, et al. Nongenotropic, sex-nonspecific signaling through the estrogen or androgen receptors: dissociation from transcriptional activity. Cell. 2001;104:719–30. - PubMed