Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jan 31:13:41.
doi: 10.1186/1475-2875-13-41.

Parasite clearance following treatment with sulphadoxine-pyrimethamine for intermittent preventive treatment in Burkina-Faso and Mali: 42-day in vivo follow-up study

Affiliations

Parasite clearance following treatment with sulphadoxine-pyrimethamine for intermittent preventive treatment in Burkina-Faso and Mali: 42-day in vivo follow-up study

Sheick O Coulibaly et al. Malar J. .

Abstract

Background: Intermittent Preventive Treatment in pregnancy (IPTp) with sulphadoxine-pyrimethamine (SP) is widely used for the control of malaria in pregnancy in Africa. The emergence of resistance to SP is a concern requiring monitoring the effectiveness of SP for IPTp.

Methods: This was an in-vivo efficacy study to determine the parasitological treatment response and the duration of post-treatment prophylaxis among asymptomatic pregnant women receiving SP as part of IPTp in Mali and Burkina-Faso. The primary outcome was the PCR-unadjusted % of patients with parasites recurrence by day 42 defined as a positive diagnostic test by malaria smear at any visit between days 4 and 42. Treatment failure was based on the standard World Health Organization criteria. The therapeutic response was estimated using the Kaplan-Meier curve.

Results: A total of 580 women were enrolled in Mali (N=268) and Burkina-Faso (N=312) and followed weekly for 42 days. Among these, 94.3% completed the follow-up. The PCR-unadjusted cumulative risk of recurrence by day 42 was 4.9% overall, and 3.2% and 6.5% in Mali and Burkina Faso respectively (Hazard Ratio [HR] =2.14, 95%, CI [0.93-4.90]; P=0.070), and higher among the primi- and secundigravida (6.4%) than multigravida (2.2%, HR=3.01 [1.04-8.69]; P=0.042). The PCR-adjusted failure risk was 1.1% overall (Mali 0.8%, Burkina-Faso 1.4%). The frequencies (95% CI) of the dhfr double and triple mutant and dhps 437 and 540 alleles mutant genotype at enrolment were 24.2% (23.7-25.0), 4.7% (4.4-5.0), and 21.4% (20.8-22.0) and 0.37% (0.29-0.44) in Mali, and 7.1% (6.5-7.7), 44.9% (43.8-46.0) and 75.3% (74.5-76.2) and 0% in Burkina-Faso, respectively. There were no dhfr 164L or dhps 581G mutations.

Conclusion: SP remains effective at clearing existing infections when provided as IPTp to asymptomatic pregnant women in Mali and Burkina. Continued monitoring of IPTp-SP effectiveness, including of the impact on birth parameters in this region is essential.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Study sites in Mali (Kita and San) and Burkina Faso (Ziniaré).
Figure 2
Figure 2
Study flow chart.
Figure 3
Figure 3
Probability of parasitological failure by microscopy in Burkina-Faso and Mali. Notes: This graph shows the crude and PCR adjusted risk of parasitological failure in Mali and Burkina-Faso. Treatment failure was defined according to the standard WHO criteria and the cumulative risk of recurrence was determined using Kaplan-Meier survival analysis. Blue lines represent Mali and red lines Burkina-Faso. Panel A and panel B represent survival analysis for crude and PCR adjusted analysis, respectively.
Figure 4
Figure 4
Probability of parasitological failure by microscopy by gravida group. Notes: (Gravidae 1&2, primi-secundigravida; Gravidae>=3, multigravida): PCR unadjusted (Panel A) and PCR adjusted (Panel B). This graph shows the crude and PCR adjusted risk of parasitological failure in both primi-secundigravida and multigravida using Kaplan-Meier survival analysis. Blue lines represents multigravida (gravidae>=3) and the red lines represent primi-secundigravida (gravidae 1&2), respectively.
Figure 5
Figure 5
Increase in haemoglobin concentrations by country in all gravida. Notes: (top panel) and by gravidae group (bottom panel). Analysis was done with repeated measures Generalized Estimating Equation (GEE), adjusted for the baseline hemoglobin levels on Day-0. Black squares or diamonds represent the point estimates and vertical lines the corresponding 95% confidence intervals.
Figure 6
Figure 6
Prevalence of SP resistance molecular makers in Burkina-Faso and Mali among parasitaemic women at their antenatal booking visit (pre-SP). Notes: dhfr /dhps alleles (Top panel) and dhfr haplotypes (Bottom panel). Mutant allele frequencies are represented in the top panel graph by horizontal bars. Lines depict the 95% confidence intervals. The presence of “0” represents the absence of point mutations for a designed codon. The bottom panel represents the frequency of dhfr haplotypes (N51I, C59R, and S108N) per country.

Similar articles

Cited by

References

    1. Dellicour S, Tatem AJ, Guerra CA, Snow RW, ter Kuile FO. Quantifying the number of pregnancies at risk of malaria in 2007: a demographic study. PLoS Med. 2010;7:e1000221. doi: 10.1371/journal.pmed.1000221. - DOI - PMC - PubMed
    1. Desai M, ter Kuile FO, Nosten F, McGready R, Asamoa K, Brabin B, Newman RD. Epidemiology and burden of malaria in pregnancy. Lancet Infect Dis. 2007;7:93–104. doi: 10.1016/S1473-3099(07)70021-X. - DOI - PubMed
    1. Steketee RW, Nahlen BL, Parise ME, Menendez C. The burden of malaria in pregnancy in malaria-endemic areas. Am J Trop Med Hyg. 2001;64:28–35. - PubMed
    1. World Health Organization. A strategic framework for malaria prevention and control during pregnancy in the African region. Brazzaville: World Health Organization: Regional Office for Africa; 2004.
    1. Kayentao K, Garner P, van Eijk AM, Naidoo I, Roper C, Mulokozi A, MacArthur JR, Luntamo M, Ashorn P, Doumbo OK, ter Kuile FO. Intermittent preventive therapy for malaria during pregnancy using 2 vs 3 or more doses of sulfadoxine-pyrimethamine and risk of low birth weight in Africa: systematic review and meta-analysis. JAMA. 2013;309:594–604. doi: 10.1001/jama.2012.216231. - DOI - PMC - PubMed

Publication types

MeSH terms