Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Sep;82(9):1734-46.
doi: 10.1002/prot.24527. Epub 2014 Feb 18.

Cation-π, amino-π, π-π, and H-bond interactions stabilize antigen-antibody interfaces

Affiliations
Free article

Cation-π, amino-π, π-π, and H-bond interactions stabilize antigen-antibody interfaces

Georgios A Dalkas et al. Proteins. 2014 Sep.
Free article

Abstract

The identification of immunogenic regions on the surface of antigens, which are able to stimulate an immune response, is a major challenge for the design of new vaccines. Computational immunology aims at predicting such regions--in particular B-cell epitopes--but is far from being reliably applicable on a large scale. To gain understanding into the factors that contribute to the antigen-antibody affinity and specificity, we perform a detailed analysis of the amino acid composition and secondary structure of antigen and antibody surfaces, and of the interactions that stabilize the complexes, in comparison with the composition and interactions observed in other heterodimeric protein interfaces. We make a distinction between linear and conformational B-cell epitopes, according to whether they consist of successive residues along the polypeptide chain or not. The antigen-antibody interfaces were shown to differ from other protein-protein interfaces by their smaller size, their secondary structure with less helices and more loops, and the interactions that stabilize them: more H-bond, cation-π, amino-π, and π-π interactions, and less hydrophobic packing; linear and conformational epitopes can clearly be distinguished. Often, chains of successive interactions, called cation/amino-π and π-π chains, are formed. The amino acid composition differs significantly between the interfaces: antigen-antibody interfaces are less aliphatic and more charged, polar and aromatic than other heterodimeric protein interfaces. Moreover, paratopes and epitopes-albeit to a lesser extent-have amino acid compositions that are distinct from general protein surfaces. This specificity holds promise for improving B-cell epitope prediction.

Keywords: B-cell epitope; antigen-antibody interactions; cation-π interactions; hydrogen bond; hydrophobic contacts; immunoinformatics; paratope; protein-protein interactions; salt bridge; π-π interactions.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources