Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jan 28;9(1):e86634.
doi: 10.1371/journal.pone.0086634. eCollection 2014.

Recommendations for the empirical treatment of complicated urinary tract infections using surveillance data on antimicrobial resistance in the Netherlands

Collaborators, Affiliations

Recommendations for the empirical treatment of complicated urinary tract infections using surveillance data on antimicrobial resistance in the Netherlands

Maike Koningstein et al. PLoS One. .

Erratum in

  • PLoS One. 2014;9(9):e107785. van Hall, Maurine A Leverstein- [corrected to Leverstein-van Hall, Maurine A]

Abstract

Background: Complicated urinary tract infections (c-UTIs) are among the most common nosocomial infections and a substantial part of the antimicrobial agents used in hospitals is for the treatment of c-UTIs. Data from surveillance can be used to guide the empirical treatment choices of clinicians when treating c-UTIs. We therefore used nation-wide surveillance data to evaluate antimicrobial coverage of agents for the treatment of c-UTI in the Netherlands.

Methods: We included the first isolate per patient of urine samples of hospitalised patients collected by the Infectious Disease Surveillance Information System for Antibiotic Resistance (ISIS-AR) in 2012, and determined the probability of inadequate coverage for antimicrobial agents based on species distribution and susceptibility. Analyses were repeated for various patient groups and hospital settings.

Results: The most prevalent bacteria in 27,922 isolates of 23,357 patients were Escherichia coli (47%), Enterococcus spp. (14%), Proteus mirabilis (8%), and Klebsiella pneumoniae (7%). For all species combined, the probability of inadequate coverage was <5% for amoxicillin or amoxicillin-clavulanic acid combined with gentamicin and the carbapenems. When including gram-negative bacteria only, the probability of inadequate coverage was 4.0%, 2.7%, 2.3% and 1.7%, respectively, for amoxicillin, amoxicillin-clavulanic acid, a second or a third generation cephalosporin in combination with gentamicin, and the carbapenems (0.4%). There were only small variations in results among different patient groups and hospital settings.

Conclusions: When excluding Enterococcus spp., considered as less virulent, and the carbapenems, considered as last-resort drugs, empirical treatment for c-UTI with the best chance of adequate coverage are one of the studied beta-lactam-gentamicin combinations. This study demonstrates the applicability of routine surveillance data for up-to-date clinical practice guidelines on empirical antimicrobial therapy, essential in patient care given the evolving bacterial susceptibility.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Pathogen distribution of various urine sample types and patient groups, ISIS-AR, the Netherlands, 2012.
*We considered an infection to represent urosepsis when a blood specimen was submitted from the same patient, with the same pathogen within 7 days of a urinary specimen with that pathogen **We considered a UTI community onset if the urine sample was collected within two days after hospital admission *** We considered a UTI hospital associated if the urine sample was collected after the second day of hospital admission.

References

    1. van der Kooi TI, Mannien J, Wille JC, van Benthem BH (2010) Prevalence of nosocomial infections in The Netherlands, 2007–2008: results of the first four national studies. J Hosp Infect 75: 168–172. - PubMed
    1. Wagenlehner FM, Naber KG (2006) Treatment of bacterial urinary tract infections: presence and future. Eur Urol 49: 235–244. - PubMed
    1. Geerlings SE, van den Broek PJ, van Haarst EP, Vleming LJ, van Haaren KM, et al. (2006) Optimisation of the antibiotic policy in the Netherlands. The SWAB guideline for antimicrobial treatment of complicated urinary tract infections [In Dutch]. Ned Tijdschr Geneeskd 150: 2370–2376. - PubMed
    1. Johnson JR, Kuskowski MA, Gajewski A, Sahm DF, Karlowsky JA (2004) Virulence characteristics and phylogenetic background of multidrug-resistant and antimicrobial-susceptible clinical isolates of Escherichia coli from across the United States, 2000–2001. J Infect Dis 190: 1739–1744. - PubMed
    1. Paterson DL, Mulazimoglu L, Casellas JM, Ko WC, Goossens H, et al. (2000) Epidemiology of ciprofloxacin resistance and its relationship to extended-spectrum beta-lactamase production in Klebsiella pneumoniae isolates causing bacteremia. Clin Infect Dis 30: 473–478. - PubMed

Publication types

MeSH terms

Substances