Neural maps in the electrosensory system of weakly electric fish
- PMID: 24492073
- DOI: 10.1016/j.conb.2013.08.013
Neural maps in the electrosensory system of weakly electric fish
Abstract
The active electrosense of weakly electric fish is evolutionarily and developmentally related to passive electrosensation and the lateral line system. It shows the most highly differentiated topographic maps of the receptor array of all these senses. It is organized into three maps in the hindbrain that are, in turn, composed of columns, each consisting of six pyramidal cell classes. The cells in each column have different spatiotemporal processing properties yielding a total of 18 topographic representations of the body surface. The differential filtering by the hindbrain maps is used by superimposed maps in the multi-layered midbrain electrosensory region to extract specific stimulus features related to communication and foraging. At levels beyond the midbrain, topographic mapping of the body surface appears to be lost.
Copyright © 2013 Elsevier Ltd. All rights reserved.
Similar articles
-
Receptive field organization across multiple electrosensory maps. I. Columnar organization and estimation of receptive field size.J Comp Neurol. 2009 Oct 10;516(5):376-93. doi: 10.1002/cne.22124. J Comp Neurol. 2009. PMID: 19655387
-
Intrinsic frequency tuning in ELL pyramidal cells varies across electrosensory maps.J Neurophysiol. 2008 May;99(5):2641-55. doi: 10.1152/jn.00028.2008. Epub 2008 Mar 26. J Neurophysiol. 2008. PMID: 18367702
-
Development of the electrosensory nervous system of Eigenmannia (gymnotiformes): II. The electrosensory lateral line lobe, midbrain, and cerebellum.J Comp Neurol. 1990 Apr 1;294(1):37-58. doi: 10.1002/cne.902940105. J Comp Neurol. 1990. PMID: 2324333
-
In vitro studies of closed-loop feedback and electrosensory processing in Apteronotus leptorhynchus.J Physiol Paris. 2008 Jul-Nov;102(4-6):173-80. doi: 10.1016/j.jphysparis.2008.10.012. Epub 2008 Oct 17. J Physiol Paris. 2008. PMID: 18996475 Review.
-
Insights into neural mechanisms and evolution of behaviour from electric fish.Nat Rev Neurosci. 2004 Dec;5(12):943-51. doi: 10.1038/nrn1558. Nat Rev Neurosci. 2004. PMID: 15550949 Review.
Cited by
-
Fish do not feel pain and its implications for understanding phenomenal consciousness.Biol Philos. 2015;30(2):149-165. doi: 10.1007/s10539-014-9469-4. Epub 2014 Dec 16. Biol Philos. 2015. PMID: 25798021 Free PMC article.
-
Neurod1 Is Essential for the Primary Tonotopic Organization and Related Auditory Information Processing in the Midbrain.J Neurosci. 2019 Feb 6;39(6):984-1004. doi: 10.1523/JNEUROSCI.2557-18.2018. Epub 2018 Dec 12. J Neurosci. 2019. PMID: 30541910 Free PMC article.
-
Neural heterogeneities determine response characteristics to second-, but not first-order stimulus features.J Neurosci. 2015 Feb 18;35(7):3124-38. doi: 10.1523/JNEUROSCI.3946-14.2015. J Neurosci. 2015. PMID: 25698748 Free PMC article.
-
Electrosensory processing in Apteronotus albifrons: implications for general and specific neural coding strategies across wave-type weakly electric fish species.J Neurophysiol. 2016 Dec 1;116(6):2909-2921. doi: 10.1152/jn.00594.2016. Epub 2016 Sep 28. J Neurophysiol. 2016. PMID: 27683890 Free PMC article.
-
Electrosensory midbrain neurons optimally decode ascending input during object localization.J Physiol. 2025 May;603(10):3123-3139. doi: 10.1113/JP288352. Epub 2025 May 5. J Physiol. 2025. PMID: 40320945 Free PMC article.
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources