Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jan 28;12(1):e1001775.
doi: 10.1371/journal.pbio.1001775. eCollection 2014 Jan.

Faster speciation and reduced extinction in the tropics contribute to the Mammalian latitudinal diversity gradient

Affiliations

Faster speciation and reduced extinction in the tropics contribute to the Mammalian latitudinal diversity gradient

Jonathan Rolland et al. PLoS Biol. .

Abstract

The increase in species richness from the poles to the tropics, referred to as the latitudinal diversity gradient, is one of the most ubiquitous biodiversity patterns in the natural world. Although understanding how rates of speciation and extinction vary with latitude is central to explaining this pattern, such analyses have been impeded by the difficulty of estimating diversification rates associated with specific geographic locations. Here, we use a powerful phylogenetic approach and a nearly complete phylogeny of mammals to estimate speciation, extinction, and dispersal rates associated with the tropical and temperate biomes. Overall, speciation rates are higher, and extinction rates lower, in the tropics than in temperate regions. The diversity of the eight most species-rich mammalian orders (covering 92% of all mammals) peaks in the tropics, except that of the Lagomorpha (hares, rabbits, and pikas) reaching a maxima in northern-temperate regions. Latitudinal patterns in diversification rates are strikingly consistent with these diversity patterns, with peaks in species richness associated with low extinction rates (Primates and Lagomorpha), high speciation rates (Diprotodontia, Artiodactyla, and Soricomorpha), or both (Chiroptera and Rodentia). Rates of range expansion were typically higher from the tropics to the temperate regions than in the other direction, supporting the "out of the tropics" hypothesis whereby species originate in the tropics and disperse into higher latitudes. Overall, these results suggest that differences in diversification rates have played a major role in shaping the modern latitudinal diversity gradient in mammals, and illustrate the usefulness of recently developed phylogenetic approaches for understanding this famous yet mysterious pattern.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Support for the “out of the tropics” scenario of mammalian species richness.
From left to right, global latitudinal diversity gradient of all mammals, and posterior distributions of speciation, extinction, net diversification, and dispersal rates corresponding to the temperate (in blue) and tropical biomes (in green). Faster speciation and reduced extinction in the tropics result in a higher net diversification rate. Range expansion from the tropics to the temperate regions is more frequent than the other way around. Posterior distributions were computed using MCMC analyses for the best-fitting model on the consensus tree. Bars below each distribution correspond to the shaded area and represent the 95% credibility interval of each estimated parameter. Speciation rate refers to within-biome speciation; speciation by biome divergence, which contributes to species richness in the tropical and temperate regions equally, is not included in this figure.
Figure 2
Figure 2. Diversification rates are consistent with diversity patterns across mammalian orders.
(Left panels) Mammalian orders (the eight most species-rich orders—covering 92% of all mammals—are represented, ranked from most to least diverse), their total species richness, and their global latitudinal diversity gradient. (Right panels) Posterior distributions of temperate (in blue) and tropical (in green) speciation, extinction, and net diversification rates estimates, computed using the best-fitting model. The grey color indicates that the best-fitting model had equal rates in the tropical and temperate biomes. The net diversification rate follows a trend consistent with the latitudinal diversity gradient: the net diversification rate is higher in the tropics, except in Lagomorpha, which shows an inverse diversity gradient, and in Carnivora, where the difference in net diversification is not significant. Speciation rate refers to within-biome speciation; speciation by biome divergence, which contributes to species richness in the tropical and temperate regions equally, is not included in this figure.
Figure 3
Figure 3. Speciation and extinction rates through time in the temperate and tropical biomes.
The speciation rate is higher, and the extinction rate lower, in the tropical biome over the majority of clade history. Lines represent the posterior mean estimates and shaded areas 95% credibility intervals.

References

    1. Hillebrand H (2004) On the generality of the latitudinal diversity gradient. Am Nat 163: 192–211. - PubMed
    1. Mittelbach GG, Schemske DW, Cornell HV, Allen AP, Brown JM, et al. (2007) Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecol Lett 10: 315–331. - PubMed
    1. Wiens JJ, Sukumaran J, Pyron RA, Brown RM (2009) Evolutionary and biogeographic origins of high tropical diversity in old world frogs (Ranidae). Evolution 63: 1217–1231. - PubMed
    1. Cardillo M, Orme CDL, Owens IPF (2005) Testing for latitudinal bias in diversification rates: an example using New World birds. Ecology 86: 2278–2287.
    1. Ricklefs RE (2006) Global variation in the diversification rate of passerine birds. Ecology 87: 2468–2478. - PubMed

Publication types

LinkOut - more resources