Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jan;62(1):82-7.
doi: 10.4103/0301-4738.126188.

Scanning the macula for detecting glaucoma

Affiliations

Scanning the macula for detecting glaucoma

Viquar U Begum et al. Indian J Ophthalmol. 2014 Jan.

Abstract

Background: With the advent of spectral domain optical coherence tomography (SDOCT), there has been a renewed interest in macular region for detection of glaucoma. However, most macular SDOCT parameters currently are thickness parameters which evaluate thinning of the macular layers but do not quantify the extent of area over which the thinning has occurred. We therefore calculated a new macular parameter, "ganglion cell complex surface abnormality ratio (GCC SAR)" that represented the surface area over which the macular thickness was decreased.

Purpose: To evaluate the ability of SAR in detecting perimetric and preperimetric glaucoma.

Design: Retrospective image analysis.

Materials and methods: 68 eyes with perimetric glaucoma, 62 eyes with preperimetric glaucoma and 165 control eyes underwent GCC imaging with SDOCT. SAR was calculated as the ratio of the abnormal to total area on the GCC significance map.

Statistical analysis: Diagnostic ability of SAR in glaucoma was compared against that of the standard parameters generated by the SDOCT software using area under receiver operating characteristic curves (AUC) and sensitivities at fixed specificities.

Results: AUC of SAR (0.91) was statistically significantly better than that of GCC average thickness (0.86, P = 0.001) and GCC global loss volume (GLV; 0.88, P = 0.01) in differentiating perimetric glaucoma from control eyes. In differentiating preperimetric glaucoma from control eyes, AUC of SAR (0.72) was comparable to that of GCC average thickness (0.70, P > 0.05) and GLV (0.72, P > 0.05). Sensitivities at specificities of 80% and 95% of SAR were comparable (P > 0.05 for all comparisons) to that of GCC average thickness and GLV in diagnosing perimetric and preperimetric glaucoma.

Conclusion: GCC SAR had a better ability to diagnose perimetric glaucoma compared to the SDOCT software provided global GCC parameters. However, in diagnosing preperimetric glaucoma, the ability of SAR was similar to that of software provided global GCC parameters.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest: None declared.

Figures

Figure 1
Figure 1
The selection of the color-coded area from the ganglion cell complex significance map using the magic wand option of photoshop CS5 software
Figure 2
Figure 2
Receiver operating characteristic curves of the global parameters of ganglion cell complex (GCC) protocol in diagnosing perimetric glaucoma (a) and preperimetric glaucoma (b). SAR: surface abnormality ratio

References

    1. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90:262–7. - PMC - PubMed
    1. Zeimer R, Asrani S, Zou S, Quigley H, Jampel H. Quantitative detection of glaucomatous damage at the posterior pole by retinal thickness mapping. A pilot study. Ophthalmology. 1998;105:224–31. - PubMed
    1. Curcio CA, Allen KA. Topography of ganglion cells in human retina. J Comp Neurol. 1990;300:5–25. - PubMed
    1. Tan O, Chopra V, Lu AT, Schuman JS, Ishikawa H, Wollstein G, et al. Detection of macular ganglion cell loss in glaucoma by Fourier-domain optical coherence tomography. Ophthalmology. 2009;116:2305–14. - PMC - PubMed
    1. Rao HL, Zangwill LM, Weinreb RN, Sample PA, Alencar LM, Medeiros FA. Comparison of different spectral domain optical coherence tomography scanning areas for glaucoma diagnosis. Ophthalmology. 2010;117:1692–9. - PubMed