RNA biology and the adaptation of Cryptococcus neoformans to host temperature and stress
- PMID: 24497369
- PMCID: PMC4073201
- DOI: 10.1002/wrna.1219
RNA biology and the adaptation of Cryptococcus neoformans to host temperature and stress
Abstract
Cryptococcus neoformans is an environmental fungus that can cause severe disease in humans. C. neoformans encounters a multitude of stresses within the human host to which it must adapt in order to survive and proliferate. Upon stressful changes in the external milieu, C. neoformans must reprogram its gene expression to properly respond to and combat stress in order to maintain homeostasis. Several studies have investigated the changes that occur in response to these stresses to begin to unravel the mechanisms of adaptation in this organism. Here, we review studies that have explored stress-induced changes in gene expression with a focus on host temperature adaptation. We compare global messenger RNA (mRNA) expression data compiled from several studies and identify patterns that suggest that orchestrated, transient responses occur. We also utilize the available expression data to explore the possibility of a common stress response that may contribute to cellular protection against a variety of stresses in C. neoformans. In addition, we review studies that have revealed the significance of post-transcriptional mechanisms of mRNA regulation in response to stress, and discuss how these processes may contribute to adaptation and virulence.
© 2014 John Wiley & Sons, Ltd.
Figures

Similar articles
-
Cdk8 and Ssn801 Regulate Oxidative Stress Resistance and Virulence in Cryptococcus neoformans.mBio. 2019 Feb 12;10(1):e02818-18. doi: 10.1128/mBio.02818-18. mBio. 2019. PMID: 30755515 Free PMC article.
-
The cause and effect of Cryptococcus interactions with the host.Curr Opin Microbiol. 2017 Dec;40:88-94. doi: 10.1016/j.mib.2017.10.012. Epub 2017 Nov 15. Curr Opin Microbiol. 2017. PMID: 29154043 Review.
-
Translational Regulation Promotes Oxidative Stress Resistance in the Human Fungal Pathogen Cryptococcus neoformans.mBio. 2019 Nov 12;10(6):e02143-19. doi: 10.1128/mBio.02143-19. mBio. 2019. PMID: 31719175 Free PMC article.
-
The interplay of phenotype and genotype in Cryptococcus neoformans disease.Biosci Rep. 2020 Oct 30;40(10):BSR20190337. doi: 10.1042/BSR20190337. Biosci Rep. 2020. PMID: 33021310 Free PMC article. Review.
-
mRNA decay: an adaptation tool for the environmental fungal pathogen Cryptococcus neoformans.Wiley Interdiscip Rev RNA. 2017 Sep;8(5). doi: 10.1002/wrna.1424. Epub 2017 May 19. Wiley Interdiscip Rev RNA. 2017. PMID: 28524625 Review.
Cited by
-
A Conserved Gcn2-Gcn4 Axis Links Methionine Utilization and the Oxidative Stress Response in Cryptococcus neoformans.Front Fungal Biol. 2021 Mar;2:640678. doi: 10.3389/ffunb.2021.640678. Epub 2021 Mar 22. Front Fungal Biol. 2021. PMID: 34622246 Free PMC article.
-
Roles of P-body factors in Candida albicans filamentation and stress response.PLoS Genet. 2025 Mar 17;21(3):e1011632. doi: 10.1371/journal.pgen.1011632. eCollection 2025 Mar. PLoS Genet. 2025. PMID: 40096135 Free PMC article.
-
Roles of P-body factors in Candida albicans filamentation and stress response.bioRxiv [Preprint]. 2025 Mar 10:2024.07.09.602714. doi: 10.1101/2024.07.09.602714. bioRxiv. 2025. Update in: PLoS Genet. 2025 Mar 17;21(3):e1011632. doi: 10.1371/journal.pgen.1011632. PMID: 40161774 Free PMC article. Updated. Preprint.
-
Thermotolerance in the pathogen Cryptococcus neoformans is linked to antigen masking via mRNA decay-dependent reprogramming.Nat Commun. 2019 Oct 30;10(1):4950. doi: 10.1038/s41467-019-12907-x. Nat Commun. 2019. PMID: 31666517 Free PMC article.
-
Cellular ATP redistribution achieved by deleting Tgparp improves lignocellulose utilization of Trichoderma under heat stress.Biotechnol Biofuels Bioprod. 2024 Apr 18;17(1):54. doi: 10.1186/s13068-024-02502-8. Biotechnol Biofuels Bioprod. 2024. PMID: 38637859 Free PMC article.
References
-
- Cryptococcus: From Human Pathogen to Model Yeast. 2nd ed. Amer Society for Microbiology; Washington, D.C.: 2011.
-
- Keene JD. RNA regulons: coordination of post-transcriptional events. Nat Rev Genet. 2007;8:533–543. - PubMed
-
- Keene JD, Lager PJ. Post-transcriptional operons and regulons co-ordinating gene expression. Chromosome Res. 2005;13:327–337. - PubMed
-
- Keene JD, Tenenbaum SA. Eukaryotic mRNPs may represent posttranscriptional operons. Mol Cell. 2002;9:1161–1167. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources