Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jan 31;9(1):e86919.
doi: 10.1371/journal.pone.0086919. eCollection 2014.

Pharmacogenetic-based efavirenz dose modification: suggestions for an African population and the different CYP2B6 genotypes

Affiliations

Pharmacogenetic-based efavirenz dose modification: suggestions for an African population and the different CYP2B6 genotypes

Jackson K Mukonzo et al. PLoS One. .

Abstract

Background: Pharmacogenetics contributes to inter-individual variability in pharmacokinetics (PK) of efavirenz (EFV), leading to variations in both efficacy and toxicity. The purpose of this study was to assess the effect of genetic factors on EFV pharmacokinetics, treatment outcomes and genotype based EFV dose recommendations for adult HIV-1 infected Ugandans.

Methods: In total, 556 steady-state plasma EFV concentrations from 99 HIV infected patients (64 female) treated with EFV/lamivudine/zidovidine were analyzed. Patient genotypes for CYP2B6 (*6 & *11), CYP3A5 (*3,*6 & *7) and ABCB1 c.4046A>G, baseline biochemistries and CD4 and viral load change from baseline were determined. A one-compartment population PK model with first-order absorption (NONMEM) was used to estimate genotype effects on EFV pharmacokinetics. PK simulations were performed based upon population genotype frequencies. Predicted AUCs were compared between the product label and simulations for doses of 300 mg, 450 mg, and 600 mg.

Results: EFV apparent clearance (CL/F) was 2.2 and 1.74 fold higher in CYP2B6*6 (*1/*1) and CYP2B6*6 (*1/*6) compared CYP2B6*6 (*6/*6) carriers, while a 22% increase in F1 was observed for carriers of ABCB1 c.4046A>G variant allele. Higher mean AUC was attained in CYP2B6 *6/*6 genotypes compared to CYP2B6 *1/*1 (p<0.0001). Simulation based AUCs for 600 mg doses were 1.25 and 2.10 times the product label mean AUC for the Ugandan population in general and CYP2B6*6/*6 genotypes respectively. Simulated exposures for EFV daily doses of 300 mg and 450 mg are comparable to the product label. Viral load fell precipitously on treatment, with only six patients having HIV RNA >40 copies/mL after 84 days of treatment. No trend with exposure was noted for these six patients.

Conclusion: Results of this study suggest that daily doses of 450 mg and 300 mg might meet the EFV treatment needs of HIV-1 infected Ugandans in general and individuals homozygous for CYP2B6*6 mutation, respectively.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Goodness of Fit.
Individual predicted EFV concentrations (IPRED) versus observed concentrations, by CYP2B6*6 genotype (B66).
Figure 2
Figure 2. The individually weighted residuals (WRES) are plotted vs. time.
The dashed line is the zero reference line while the solid line is a smooth nonparametric regression line. The plot demonstrates a good fit of all time point concentration data by the model.
Figure 3
Figure 3. Distribution of estimated patient AUC values by CYP2B6 genotype.
CYP2B6*1/*1, CYP2B6 *1/*6, and CYP2B6 *6/*6. Dotted line = the mean AUC value in the product label.

Similar articles

Cited by

References

    1. (2009) WHO/HTM/TB/2009.420, Treatment of tuberculosis: guidelines - 4th ed., http://whqlibdoc.who.int/publications/2010/9789241547833_eng.pdf.2009, WHO Library Cataloguing-in-Publication Data.
    1. Marzolini C, Telenti A, Decosterd LA, Greub G, Biollaz J, et al. (2001) Efavirenz plasma levels can predict treatment failure and central nervous system side effects in HIV-1-infected patients. AIDS 15: 71–75. - PubMed
    1. Solas C, Gagnieu MC (2011) [Evidence-based therapeutic drug monitoring for efavirenz]. Therapie 66: 197–205. - PubMed
    1. Burger D, van der Heiden I, la Porte C, van der Ende M, Groeneveld P, et al. (2006) Interpatient variability in the pharmacokinetics of the HIV non-nucleoside reverse transcriptase inhibitor efavirenz: the effect of gender, race, and CYP2B6 polymorphism. Br J Clin Pharmacol 61: 148–154. - PMC - PubMed
    1. Stohr W, Back D, Dunn D, Sabin C, Winston A, et al. (2008) Factors influencing efavirenz and nevirapine plasma concentration: effect of ethnicity, weight and co-medication. Antivir Ther 13: 675–685. - PubMed

Publication types

MeSH terms