Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Mar 21;6(6):3223-30.
doi: 10.1039/c3nr05607d. Epub 2014 Feb 6.

In situ synthesized one-dimensional porous Ni@C nanorods as catalysts for hydrogen storage properties of MgH2

Affiliations

In situ synthesized one-dimensional porous Ni@C nanorods as catalysts for hydrogen storage properties of MgH2

Cuihua An et al. Nanoscale. .

Abstract

We have demonstrated an extremely facile procedure for the preparation of 1D porous Ni@C nanostructures by pyrolysis of Ni-based coordination polymer nanorods. The highly aligned Ni-based polymer nanorods were prepared using nitrilotriacetic acid (NTA) as a chelating agent by a one-step solvothermal approach. The obtained precursors are demonstrated to have a well-designed 1D nanostructure and a 3D interconnected mesoporous texture. After thermal treatment, 1D porous Ni@C nanorods were obtained, which basically preserved the morphology of the precursors. In addition, the carbon in the porous Ni@C nanorods is in both crystalline and amorphous states. The as-prepared Ni@C sample displays nanorod-like morphology with about 3 μm length and about 200 nm diameter. With a large surface area of 161.4 m(2) g(-1), this novel material had a good catalytic effect on de/hydrogenation of MgH2. The desorption peak temperature of MgH2-5 wt% Ni@C composites can be lowered more than 57 °C than the pure as-milled MgH2. The MgH2-5 wt% Ni@C composite could desorb 6.4 wt% H2 within 10 min at 300 °C, in contrast, only 2.3 wt% H2 was desorbed even after 100 min for pure MgH2. In addition, an activation energy of 108 kJ mol(-1) for the as-milled MgH2-5 wt% Ni@C composites has been obtained, which exhibit an enhanced kinetics.

PubMed Disclaimer

Publication types

LinkOut - more resources