Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 May;306(9):R647-62.
doi: 10.1152/ajpregu.00039.2013. Epub 2014 Feb 5.

A model-based approach to investigating the pathophysiological mechanisms of hypertension and response to antihypertensive therapies: extending the Guyton model

Affiliations
Free article

A model-based approach to investigating the pathophysiological mechanisms of hypertension and response to antihypertensive therapies: extending the Guyton model

K Melissa Hallow et al. Am J Physiol Regul Integr Comp Physiol. 2014 May.
Free article

Abstract

Reproducibly differential responses to different classes of antihypertensive agents are observed among hypertensive patients and may be due to interindividual differences in hypertension pathology. Computational models provide a tool for investigating the impact of underlying disease mechanisms on the response to antihypertensive therapies with different mechanisms of action. We present the development, calibration, validation, and application of an extension of the Guyton/Karaaslan model of blood pressure regulation. The model incorporates a detailed submodel of the renin-angiotensin-aldosterone system (RAAS), allowing therapies that target different parts of this pathway to be distinguished. Literature data on RAAS biomarker and blood pressure responses to different classes of therapies were used to refine the physiological actions of ANG II and aldosterone on renin secretion, renal vascular resistance, and sodium reabsorption. The calibrated model was able to accurately reproduce the RAAS biomarker and blood pressure responses to combinations of dual-RAAS agents, as well as RAAS therapies in combination with diuretics or calcium channel blockers. The final model was used to explore the impact of underlying mechanisms of hypertension on the blood pressure response to different classes of antihypertensive agents. Simulations indicate that the underlying etiology of hypertension can impact the magnitude of response to a given class of therapy, making a patient more sensitive to one class and less sensitive others. Given that hypertension is usually the result of multiple mechanisms, rather than a single factor, these findings yield insight into why combination therapy is often required to adequately control blood pressure.

Keywords: blood pressure; hypertension; renin-angiotensin-aldosterone system; systems biology.

PubMed Disclaimer

Publication types

MeSH terms

Substances

LinkOut - more resources