Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Jul 30;8(3):450-64.
doi: 10.4056/sigs.383362.

Genome sequence of the phage-gene rich marine Phaeobacter arcticus type strain DSM 23566(T.)

Affiliations

Genome sequence of the phage-gene rich marine Phaeobacter arcticus type strain DSM 23566(T.)

Heike M Freese et al. Stand Genomic Sci. .

Abstract

Phaeobacter arcticus Zhang et al. 2008 belongs to the marine Roseobacter clade whose members are phylogenetically and physiologically diverse. In contrast to the type species of this genus, Phaeobacter gallaeciensis, which is well characterized, relatively little is known about the characteristics of P. arcticus. Here, we describe the features of this organism including the annotated high-quality draft genome sequence and highlight some particular traits. The 5,049,232 bp long genome with its 4,828 protein-coding and 81 RNA genes consists of one chromosome and five extrachromosomal elements. Prophage sequences identified via PHAST constitute nearly 5% of the bacterial chromosome and included a potential Mu-like phage as well as a gene-transfer agent (GTA). In addition, the genome of strain DSM 23566(T) encodes all of the genes necessary for assimilatory nitrate reduction. Phylogenetic analysis and intergenomic distances indicate that the classification of the species might need to be reconsidered.

Keywords: Alphaproteobacteria; Roseobacter clade; aerobic; assimilatory nitrate reduction; extrachromosomal elements; high-quality draft; motile; prophage-like structures; psychrophilic.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Phylogenetic tree highlighting the position of P. arcticus relative to the type strains of the other species within the genus Phaeobacter and neighboring genera such as Leisingera. The tree was inferred from 1,385 aligned characters [6,7] of the 16S rRNA gene sequence under the maximum likelihood (ML) criterion [8]. Oceanicola species were included in the dataset as outgroup taxa. The branches are scaled in terms of the expected number of substitutions per site. Numbers adjacent to the branches are support values from 1,000 ML bootstrap replicates [9] (left) and from 1,000 maximum-parsimony bootstrap replicates [10] (right) if larger than 60%. Lineages with type-strain genome sequencing projects registered in GOLD [11] are labeled with one asterisk, those also listed as 'Complete and Published' with two asterisks [12]. Two novel genome sequences were published in this issue [58,59].
Figure 2
Figure 2
Scanning electron micrograph of P. arcticus DSM 23566T
Figure 3a
Figure 3a
Graphical map of the Phaeobacter arcticus DSM 23566T chromosome cArct_4215. From bottom to the top: Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew.
Figure 3b
Figure 3b
Graphical map of the Phaeobacter arcticus DSM 23566T extrachromosomal element pArct_A280. From outside to the center: Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew.
Figure 3c
Figure 3c
Graphical map of the Phaeobacter arcticus DSM 23566T extrachromosomal element pArct_B229. From outside to the center: Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew.
Figure 3d
Figure 3d
Graphical map of the Phaeobacter arcticus DSM 23566T extrachromosomal element pArct_C203. From bottom to the top: Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew.
Figure 3e
Figure 3e
Graphical map of the Phaeobacter arcticus DSM 23566T extrachromosomal element pArct_D92. From bottom to the top: Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew.
Figure 3f
Figure 3f
Graphical map of the Phaeobacter arcticus DSM 23566T extrachromosomal element pArct_E29. From outside to the center: Genes on forward strand (color by COG categories), Genes on reverse strand (color by COG categories), RNA genes (tRNAs green, rRNAs red, other RNAs black), GC content, GC skew.

References

    1. Zhang DC, Li HR, Xin YH, Liu HC, Chi ZM, Zhou PJ, Yu Y. Phaeobacter arcticus sp. nov., a psychrophilic bacterium isolated from the Arctic. Int J Syst Evol Microbiol 2008; 58:1384-1387 10.1099/ijs.0.65708-0 - DOI - DOI - PubMed
    1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic Local Alignment Search Tool. J Mol Biol 1990; 215:403-410 - PubMed
    1. Korf I, Yandell M, Bedell J. BLAST, O'Reilly, Sebastopol, 2003.
    1. DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 2006; 72:5069-5072 10.1128/AEM.03006-05 - DOI - PMC - PubMed
    1. Porter MF. An algorithm for suffix stripping. Program: electronic library and information systems 1980; 14: 130-137.

LinkOut - more resources