Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2014 May 1;116(9):1123-32.
doi: 10.1152/japplphysiol.01312.2013. Epub 2014 Feb 6.

Selecting the correct exercise intensity for unbiased comparisons of thermoregulatory responses between groups of different mass and surface area

Affiliations
Free article
Randomized Controlled Trial

Selecting the correct exercise intensity for unbiased comparisons of thermoregulatory responses between groups of different mass and surface area

Matthew N Cramer et al. J Appl Physiol (1985). .
Free article

Abstract

We assessed whether comparisons of thermoregulatory responses between groups unmatched for body mass and surface area (BSA) should be performed using a metabolic heat production (prod) in Watts or Watts per kilogram for changes in rectal temperature (ΔTre), and an evaporative heat balance requirement (Ereq) in Watts or Watts per square meter for local sweat rates (LSR). Two groups with vastly different mass and BSA [large (LG): 91.5 ± 6.8 kg, 2.12 ± 0.09 m(2), n = 8; small (SM): 67.6 ± 5.6 kg, 1.80 ± 0.09 m(2), n = 8; P < 0.001], but matched for heat acclimation status, sex, age, and with the same onset threshold esophageal temperatures (LG: +0.37 ± 0.12°C; SM: +0.41 ± 0.17°C; P = 0.364) and thermosensitivities (LG: 1.02 ± 0.54, SM: 1.00 ± 0.38 mg·cm(-2)·min(-1)·°C(-1); P = 0.918) for sweating, cycled for 60 min in 25°C at different levels of prod (500 W, 600 W, 6.5 W/kg, 9.0 W/kg) and Ereq (340 W, 400 W, 165 W/m(2), 190 W/m(2)). ΔTre was different between groups at a prod of 500 W (LG: 0.52 ± 0.15°C, SM: 0.92 ± 0.24°C; P < 0.001) and 600 W (LG: 0.78 ± 0.19°C, SM: 1.14 ± 0.24°C; P = 0.007), but similar at 6.5 W/kg (LG: 0.79 ± 0.21°C, SM: 0.85 ± 0.14°C; P = 0.433) and 9.0 W/kg (LG: 1.02 ± 0.22°C, SM: 1.14 ± 0.24°C; P = 0.303). Furthermore, ΔTre was the same at 9.0 W/kg in a 35°C environment (LG: 1.12 ± 0.30°C, SM: 1.14 ± 0.25°C) as at 25°C (P > 0.230). End-exercise LSR was different at Ereq of 400 W (LG: 0.41 ± 0.18, SM: 0.57 ± 0.13 mg·cm(-2)·min(-1); P = 0.043) with a trend toward higher LSR in SM at 340 W (LG: 0.28 ± 0.06, SM: 0.37 ± 0.15 mg·cm(-2)·min(-1); P = 0.057), but similar at 165 W/m(2) (LG: 0.28 ± 0.06, SM: 0.28 ± 0.12 mg·cm(-2)·min(-1); P = 0.988) and 190 W/m(2) (LG: 0.41 ± 0.18, SM: 0.37 ± 0.15 mg·cm(-2)·min(-1); P = 0.902). In conclusion, when comparing groups unmatched for mass and BSA, future experiments can avoid systematic differences in ΔTre and LSR by using a fixed prod in Watts per kilogram and Ereq in Watts per square meter, respectively.

Keywords: body mass; body surface area; core temperature; local sweat rate; thermoregulation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources