Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Feb 17;24(4):465-70.
doi: 10.1016/j.cub.2014.01.036. Epub 2014 Feb 6.

An alternative root for the eukaryote tree of life

Affiliations
Free article

An alternative root for the eukaryote tree of life

Ding He et al. Curr Biol. .
Free article

Abstract

The root of the eukaryote tree of life defines some of the most fundamental relationships among species. It is also critical for defining the last eukaryote common ancestor (LECA), the shared heritage of all extant species. The unikont-bikont root has been the reigning paradigm for eukaryotes for more than 10 years but is becoming increasingly controversial. We developed a carefully vetted data set, consisting of 37 nuclear-encoded proteins of close bacterial ancestry (euBacs) and their closest bacterial relatives, augmented by deep sequencing of the Acrasis kona (Heterolobosea, Discoba) transcriptome. Phylogenetic analysis of these data produces a highly robust, fully resolved global phylogeny of eukaryotes. The tree sorts all examined eukaryotes into three megagroups and identifies the Discoba, and potentially its parent taxon Excavata, as the sister group to the bulk of known eukaryote diversity, the proposed Neozoa (Amorphea + Stramenopila+Alveolata+Rhizaria+Plantae [SARP]). All major alternative hypotheses are rejected with as little as ∼50% of the data, and this resolution is unaffected by the presence of fast-evolving alignment positions or distant outgroup sequences. This "neozoan-excavate" root revises hypotheses of early eukaryote evolution and highlights the importance of the poorly studied Discoba for understanding the evolution of eukaryotic diversity and basic cellular processes.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

Associated data