Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Apr 15;263(11):5390-5.

1,25-Dihydroxyvitamin D production and receptor binding in human keratinocytes varies with differentiation

Affiliations
  • PMID: 2451669
Free article

1,25-Dihydroxyvitamin D production and receptor binding in human keratinocytes varies with differentiation

S Pillai et al. J Biol Chem. .
Free article

Abstract

Human foreskin keratinocytes in culture produce 1,25-dihydroxycholecalciferol (1,25-(OH)2D3) and 24,25-dihydroxycholecalciferol (24,25-(OH)2D3) from 25-hydroxycholecalciferol (25-(OH)D3). The production of 1,25-(OH)2D3 by these cells correlated with the early events of differentiation such as expression of transglutaminase activity and the levels of a precursor protein for the cornified envelopes, involucrin. In contrast, the increased production of 24,25-(OH)2D3, as 1,25-(OH)2D3 production declined, correlated with the terminal differentiation marker, cornified envelope formation. Exogenous 1,25-(OH)2D3 (10(-11)-10(-9) M) inhibited the 1-alpha-hydroxylase at all stages of growth of these cells. Keratinocytes in culture expressed receptors for 1,25-(OH)2D3 which had similar sedimentation behavior in sucrose density gradients as chick intestinal cytosol receptors. Cells in early stages of growth (preconfluent and confluent) contained higher numbers of receptors (26-27 fmol/mg protein) than post-confluent cells. The dissociation constant (237-278 pM) of these receptors for 1,25-(OH)2D3 was not consistently altered by differentiation. Since 1,25-(OH)2D3 is a potent stimulator of cell differentiation in a variety of systems including the epidermis, our results suggest the possibility that endogenous 1,25-(OH)2D3 production may participate in the differentiation of keratinocytes in culture and, perhaps, in vivo.

PubMed Disclaimer

Publication types

LinkOut - more resources