Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Jul 10;33(15):2645-64.
doi: 10.1002/sim.6109. Epub 2014 Feb 11.

A dynamic trajectory class model for intensive longitudinal categorical outcome

Affiliations

A dynamic trajectory class model for intensive longitudinal categorical outcome

Haiqun Lin et al. Stat Med. .

Abstract

This paper presents a novel dynamic latent class model for a longitudinal response that is frequently measured as in our prospective study of older adults with monthly data on activities of daily living for more than 10 years. The proposed method is especially useful when the longitudinal response is measured much more frequently than other relevant covariates. The trajectory classes are latent classes that represent distinct temporal patterns of the longitudinal response wherein an individual may remain in a trajectory class or switch to another as the class membership predictors are updated periodically over time. The identification of a common set of trajectory classes allows changes among the temporal patterns to be distinguished from local fluctuations in the response. Within a trajectory class, the longitudinal response is modeled by a class-specific generalized linear mixed model. An informative event such as death is jointly modeled by class-specific probability of the event through shared random effects with that for the longitudinal response. We do not impose the conditional independence assumption given the classes. We illustrate the method by analyzing the change over time in activities of daily living trajectory class among 754 older adults with 70,500 person-months of follow-up in the Precipitating Events Project. We also investigate the impact of jointly modeling the class-specific probability of the event on the parameter estimates in a simulation study. The primary contribution of our paper is the periodic updating of trajectory classes for a longitudinal categorical response without assuming conditional independence.

Keywords: dynamic latent class; intensive longitudinal data; joint model; longitudinal categorical data; shared random effects; trajectory class.

PubMed Disclaimer

Conflict of interest statement

Conflict of Interest: None declared.

Figures

Figure 1
Figure 1
The Five Trajectory Classes of ADL

References

    1. Gill TM, Hardy SE, Williams CS. Underestimation of disability in community-living older persons. Journal of the American Geriatrics. 2002;50:1492–1497. - PubMed
    1. Hardy SE, Gill TM. Recovery from disability among community dwelling older persons. Journal of the American Medical Association. 2004;291:1596–1602. - PubMed
    1. Gill TM, Gahbauer EA, Han L, Allore HG. Trajectories of disability in the last year of life. New England Journal of Medicine. 2010;362(13):1173–1180. - PMC - PubMed
    1. McCulloch CE, Searle SR. Generalized, Linear, and Mixed Models. Wiley-Interscience; New York: 2001.
    1. Hedeker D, Gibbons RD. Longitudinal Data Analysis. John Wiley & Sons; New York: 2006.

Publication types

LinkOut - more resources