Matrix revisited: mechanisms linking energy substrate metabolism to the function of the heart
- PMID: 24526677
- PMCID: PMC4410983
- DOI: 10.1161/CIRCRESAHA.114.301863
Matrix revisited: mechanisms linking energy substrate metabolism to the function of the heart
Abstract
Metabolic signaling mechanisms are increasingly recognized to mediate the cellular response to alterations in workload demand, as a consequence of physiological and pathophysiological challenges. Thus, an understanding of the metabolic mechanisms coordinating activity in the cytosol with the energy-providing pathways in the mitochondrial matrix becomes critical for deepening our insights into the pathogenic changes that occur in the stressed cardiomyocyte. Processes that exchange both metabolic intermediates and cations between the cytosol and mitochondria enable transduction of dynamic changes in contractile state to the mitochondrial compartment of the cell. Disruption of such metabolic transduction pathways has severe consequences for the energetic support of contractile function in the heart and is implicated in the pathogenesis of heart failure. Deficiencies in metabolic reserve and impaired metabolic transduction in the cardiomyocyte can result from inherent deficiencies in metabolic phenotype or maladaptive changes in metabolic enzyme expression and regulation in the response to pathogenic stress. This review examines both current and emerging concepts of the functional linkage between the cytosol and the mitochondrial matrix with a specific focus on metabolic reserve and energetic efficiency. These principles of exchange and transport mechanisms across the mitochondrial membrane are reviewed for the failing heart from the perspectives of chronic pressure overload and diabetes mellitus.
Keywords: cytosol; diabetes mellitus; heart failure; metabolic pathways; metabolism; mitochondria; mobilization.
Figures





Similar articles
-
Cardiac metabolism in heart failure: implications beyond ATP production.Circ Res. 2013 Aug 30;113(6):709-24. doi: 10.1161/CIRCRESAHA.113.300376. Circ Res. 2013. PMID: 23989714 Free PMC article. Review.
-
Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes.Circ Res. 2013 Aug 16;113(5):603-16. doi: 10.1161/CIRCRESAHA.113.302095. Circ Res. 2013. PMID: 23948585 Free PMC article. Review.
-
BRG1 and BRM SWI/SNF ATPases redundantly maintain cardiomyocyte homeostasis by regulating cardiomyocyte mitophagy and mitochondrial dynamics in vivo.Cardiovasc Pathol. 2016 May-Jun;25(3):258-269. doi: 10.1016/j.carpath.2016.02.004. Epub 2016 Mar 4. Cardiovasc Pathol. 2016. PMID: 27039070 Free PMC article.
-
Metabolic remodeling in hypertrophied and failing myocardium: a review.Am J Physiol Heart Circ Physiol. 2017 Sep 1;313(3):H597-H616. doi: 10.1152/ajpheart.00731.2016. Epub 2017 Jun 23. Am J Physiol Heart Circ Physiol. 2017. PMID: 28646030 Review.
-
Metabolic remodelling in heart failure.Nat Rev Cardiol. 2018 Aug;15(8):457-470. doi: 10.1038/s41569-018-0044-6. Nat Rev Cardiol. 2018. PMID: 29915254 Review.
Cited by
-
Comprehensive metabolic modeling of multiple 13C-isotopomer data sets to study metabolism in perfused working hearts.Am J Physiol Heart Circ Physiol. 2016 Oct 1;311(4):H881-H891. doi: 10.1152/ajpheart.00428.2016. Epub 2016 Aug 5. Am J Physiol Heart Circ Physiol. 2016. PMID: 27496880 Free PMC article.
-
Reactivation of PPARα alleviates myocardial lipid accumulation and cardiac dysfunction by improving fatty acid β-oxidation in Dsg2-deficient arrhythmogenic cardiomyopathy.Acta Pharm Sin B. 2023 Jan;13(1):192-203. doi: 10.1016/j.apsb.2022.05.018. Epub 2022 May 21. Acta Pharm Sin B. 2023. PMID: 36815030 Free PMC article.
-
Multiphasic Regulation of Systemic and Peripheral Organ Metabolic Responses to Cardiac Hypertrophy.Circ Heart Fail. 2017 Apr;10(4):e003864. doi: 10.1161/CIRCHEARTFAILURE.117.003864. Circ Heart Fail. 2017. PMID: 28404627 Free PMC article.
-
Peroxisome proliferator-activated receptor-α expression induces alterations in cardiac myofilaments in a pressure-overload model of hypertrophy.Am J Physiol Heart Circ Physiol. 2017 Apr 1;312(4):H681-H690. doi: 10.1152/ajpheart.00469.2016. Epub 2017 Jan 27. Am J Physiol Heart Circ Physiol. 2017. PMID: 28130336 Free PMC article.
-
Comprehensive plasma metabolites profiling reveals phosphatidylcholine species as potential predictors for cardiac resynchronization therapy response.ESC Heart Fail. 2021 Feb;8(1):280-290. doi: 10.1002/ehf2.13037. Epub 2020 Nov 19. ESC Heart Fail. 2021. PMID: 33211407 Free PMC article.
References
-
- Balaban RS. Cardiac energy metabolism homeostasis: role of cytosolic calcium. J Mol Cell Cardiol. 2002;34:1259–1271. - PubMed
-
- Mootha VK, Arai AE, Balaban RS. Maximum oxidative phosphorylation capacity of the mammalian heart. Am J Physiol. 1997;272:H769–H775. - PubMed
-
- Bache RJ, Zhang J, Murakami Y, Zhang Y, Cho YK, Merkle H, Gong G, From AH, Ugurbil K. Myocardial oxygenation at high workstates in hearts with left ventricular hypertrophy. Cardiovasc Res. 1999;42:616–626. - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical