Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2013 Nov;2(9):490-498.
doi: 10.1089/wound.2012.0379.

An Introduction to Functional Genomics and Systems Biology

Affiliations

An Introduction to Functional Genomics and Systems Biology

Evelien M Bunnik et al. Adv Wound Care (New Rochelle). 2013 Nov.

Abstract

Objective: Over the past decade, the development of high-throughput technologies for DNA and protein analysis has revolutionized the ways in which cells can be studied. Within a relatively short time frame, research has changed from studying individual genes and proteins to analyzing entire genomes and proteomes.

Approach: In this article, we summarize the technologies and concepts that form the basis of this functional genomics approach.

Results: Microarray and next-generation sequencing technologies have allowed researchers to investigate many different aspects of the cell, including DNA mutations, histone modifications, DNA methylation, chromatin structure, transcription, and translation on a genome-wide level. In addition, mass spectrometry technologies have undergone significant development and currently enable us to globally profile protein levels, protein-protein interactions, post-translational protein modifications, and metabolites.

Innovation and conclusion: The integration of information from the various processes that occur within a cell provides a more complete picture of how genes give rise to biological functions, and will ultimately help us to understand the biology of organisms, in both health and disease.

PubMed Disclaimer

Figures

None
Karine G. Le Roch, PhD
Figure 1.
Figure 1.
Comparison between Sanger sequencing and next-generation sequencing (NGS) technologies. Sanger sequencing is limited to determining the order of one fragment of DNA per reaction, up to a maximum length of ∼700 bases. NGS platforms can sequence millions of DNA fragments in parallel in one reaction, yielding enormous amounts of data. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/wound
Figure 2.
Figure 2.
Applications of NGS. The types of experiments that can be performed using NGS are many fold and are certainly not limited to the applications listed here. Applications include sequencing the complete genome or exome (all coding regions of the genome) to identify single-nucleotide polymorphisms (SNP-Seq) or other DNA mutations, profiling the genome-wide locations of methylated cytosines (Bisulfite-Seq), investigating various aspects of chromatin structure and regulation of gene expression by determining nucleosome positioning (MAINE-Seq and FAIRE-Seq), histone modifications or transcription factor binding (ChIP-Seq), and determining mRNA levels to study gene expression and its regulation (RNA-Seq). To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/wound
Figure 3.
Figure 3.
Schematic overview of network analysis. Integration of information from different aspects of the cell, such as genome, transcriptome, proteome, interactome, and metabolome, will increase our understanding of how these components are interconnected and how these interactions determine biological functions. To see this illustration in color, the reader is referred to the web version of this article at www.liebertpub.com/wound

References

    1. Lander ES. Linton LM. Birren B. Nusbaum C. Zody MC. Baldwin J. Devon K. Dewar K. Doyle M. FitzHugh W. Funke R. Gage D. Harris K. Heaford A. Howland J. Kann L. Lehoczky J. LeVine R. McEwan P. McKernan K. Meldrim J. Mesirov JP. Miranda C. Morris W. Naylor J. Raymond C. Rosetti M. Santos R. Sheridan A. Sougnez C. Stange-Thomann N. Stojanovic N. Subramanian A. Wyman D. Rogers J. Sulston J. Ainscough R. Beck S. Bentley D. Burton J. Clee C. Carter N. Coulson A. Deadman R. Deloukas P. Dunham A. Dunham I. Durbin R. French L. Grafham D. Gregory S. Hubbard T. Humphray S. Hunt A. Jones M. Lloyd C. McMurray A. Matthews L. Mercer S. Milne S. Mullikin JC. Mungall A. Plumb R. Ross M. Shownkeen R. Sims S. Waterston RH. Wilson RK. Hillier LW. McPherson JD. Marra MA. Mardis ER. Fulton LA. Chinwalla AT. Pepin KH. Gish WR. Chissoe SL. Wendl MC. Delehaunty KD. Miner TL. Delehaunty A. Kramer JB. Cook LL. Fulton RS. Johnson DL. Minx PJ. Clifton SW. Hawkins T. Branscomb E. Predki P. Richardson P. Wenning S. Slezak T. Doggett N. Cheng JF. Olsen A. Lucas S. Elkin C. Uberbacher E. Frazier M. Gibbs RA. Muzny DM. Scherer SE. Bouck JB. Sodergren EJ. Worley KC. Rives CM. Gorrell JH. Metzker ML. Naylor SL. Kucherlapati RS. Nelson DL. Weinstock GM. Sakaki Y. Fujiyama A. Hattori M. Yada T. Toyoda A. Itoh T. Kawagoe C. Watanabe H. Totoki Y. Taylor T. Weissenbach J. Heilig R. Saurin W. Artiguenave F. Brottier P. Bruls T. Pelletier E. Robert C. Wincker P. Smith DR. Doucette-Stamm L. Rubenfield M. Weinstock K. Lee HM. Dubois J. Rosenthal A. Platzer M. Nyakatura G. Taudien S. Rump A. Yang H. Yu J. Wang J. Huang G. Gu J. Hood L. Rowen L. Madan A. Qin S. Davis RW. Federspiel NA. Abola AP. Proctor MJ. Myers RM. Schmutz J. Dickson M. Grimwood J. Cox DR. Olson MV. Kaul R. Raymond C. Shimizu N. Kawasaki K. Minoshima S. Evans GA. Athanasiou M. Schultz R. Roe BA. Chen F. Pan H. Ramser J. Lehrach H. Reinhardt R. McCombie WR. de la Bastide M. Dedhia N. Blöcker H. Hornischer K. Nordsiek G. Agarwala R. Aravind L. Bailey JA. Bateman A. Batzoglou S. Birney E. Bork P. Brown DG. Burge CB. Cerutti L. Chen HC. Church D. Clamp M. Copley RR. Doerks T. Eddy SR. Eichler EE. Furey TS. Galagan J. Gilbert JG. Harmon C. Hayashizaki Y. Haussler D. Hermjakob H. Hokamp K. Jang W. Johnson LS. Jones TA. Kasif S. Kaspryzk A. Kennedy S. Kent WJ. Kitts P. Koonin EV. Korf I. Kulp D. Lancet D. Lowe TM. McLysaght A. Mikkelsen T. Moran JV. Mulder N. Pollara VJ. Ponting CP. Schuler G. Schultz J. Slater G. Smit AF. Stupka E. Szustakowski J. Thierry-Mieg D. Thierry-Mieg J. Wagner L. Wallis J. Wheeler R. Williams A. Wolf YI. Wolfe KH. Yang SP. Yeh RF. Collins F. Guyer MS. Peterson J. Felsenfeld A. Wetterstrand KA. Patrinos A. Morgan MJ. de Jong P. Catanese JJ. Osoegawa K. Shizuya H. Choi S. Chen YJ. International Human Genome Sequencing Consortium: Initial sequencing and analysis of the human genome. Nature. 2001;409:860. - PubMed
    1. Venter JC. Adams MD. Myers EW. Li PW. Mural RJ. Sutton GG. Smith HO. Yandell M. Evans CA. Holt RA. Gocayne JD. Amanatides P. Ballew RM. Huson DH. Wortman JR. Zhang Q. Kodira CD. Zheng XH. Chen L. Skupski M. Subramanian G. Thomas PD. Zhang J. Gabor Miklos GL. Nelson C. Broder S. Clark AG. Nadeau J. McKusick VA. Zinder N. Levine AJ. Roberts RJ. Simon M. Slayman C. Hunkapiller M. Bolanos R. Delcher A. Dew I. Fasulo D. Flanigan M. Florea L. Halpern A. Hannenhalli S. Kravitz S. Levy S. Mobarry C. Reinert K. Remington K. Abu-Threideh J. Beasley E. Biddick K. Bonazzi V. Brandon R. Cargill M. Chandramouliswaran I. Charlab R. Chaturvedi K. Deng Z. Di Francesco V. Dunn P. Eilbeck K. Evangelista C. Gabrielian AE. Gan W. Ge W. Gong F. Gu Z. Guan P. Heiman TJ. Higgins ME. Ji RR. Ke Z. Ketchum KA. Lai Z. Lei Y. Li Z. Li J. Liang Y. Lin X. Lu F. Merkulov GV. Milshina N. Moore HM. Naik AK. Narayan VA. Neelam B. Nusskern D. Rusch DB. Salzberg S. Shao W. Shue B. Sun J. Wang Z. Wang A. Wang X. Wang J. Wei M. Wides R. Xiao C. Yan C. Yao A. Ye J. Zhan M. Zhang W. Zhang H. Zhao Q. Zheng L. Zhong F. Zhong W. Zhu S. Zhao S. Gilbert D. Baumhueter S. Spier G. Carter C. Cravchik A. Woodage T. Ali F. An H. Awe A. Baldwin D. Baden H. Barnstead M. Barrow I. Beeson K. Busam D. Carver A. Center A. Cheng ML. Curry L. Danaher S. Davenport L. Desilets R. Dietz S. Dodson K. Doup L. Ferriera S. Garg N. Gluecksmann A. Hart B. Haynes J. Haynes C. Heiner C. Hladun S. Hostin D. Houck J. Howland T. Ibegwam C. Johnson J. Kalush F. Kline L. Koduru S. Love A. Mann F. May D. McCawley S. McIntosh T. McMullen I. Moy M. Moy L. Murphy B. Nelson K. Pfannkoch C. Pratts E. Puri V. Qureshi H. Reardon M. Rodriguez R. Rogers YH. Romblad D. Ruhfel B. Scott R. Sitter C. Smallwood M. Stewart E. Strong R. Suh E. Thomas R. Tint NN. Tse S. Vech C. Wang G. Wetter J. Williams S. Williams M. Windsor S. Winn-Deen E. Wolfe K. Zaveri J. Zaveri K. Abril JF. Guigœ R. Campbell MJ. Sjolander KV. Karlak B. Kejariwal A. Mi H. Lazareva B. Hatton T. Narechania A. Diemer K. Muruganujan A. Guo N. Sato S. Bafna V. Istrail S. Lippert R. Schwartz R. Walenz B. Yooseph S. Allen D. Basu A. Baxendale J. Blick L. Caminha M. Carnes-Stine J. Caulk P. Chiang YH. Coyne M. Dahlke C. Mays A. Dombroski M. Donnelly M. Ely D. Esparham S. Fosler C. Gire H. Glanowski S. Glasser K. Glodek A. Gorokhov M. Graham K. Gropman B. Harris M. Heil J. Henderson S. Hoover J. Jennings D. Jordan C. Jordan J. Kasha J. Kagan L. Kraft C. Levitsky A. Lewis M. Liu X. Lopez J. Ma D. Majoros W. McDaniel J. Murphy S. Newman M. Nguyen T. Nguyen N. Nodell M. Pan S. Peck J. Peterson M. Rowe W. Sanders R. Scott J. Simpson M. Smith T. Sprague A. Stockwell T. Turner R. Venter E. Wang M. Wen M. Wu D. Wu M. Xia A. Zandieh A. Zhu X. The sequence of the human genome. Science. 2001;291:1304. - PubMed
    1. Margulies M. Egholm M. Altman WE. Attiya S. Bader JS. Bemben LA. Berka J. Braverman MS. Chen YJ. Chen Z. Dewell SB. Du L. Fierro JM. Gomes XV. Godwin BC. He W. Helgesen S. Ho CH. Irzyk GP. Jando SC. Alenquer ML. Jarvie TP. Jirage KB. Kim JB. Knight JR. Lanza JR. Leamon JH. Lefkowitz SM. Lei M. Li J. Lohman KL. Lu H. Makhijani VB. McDade KE. McKenna MP. Myers EW. Nickerson E. Nobile JR. Plant R. Puc BP. Ronan MT. Roth GT. Sarkis GJ. Simons JF. Simpson JW. Srinivasan M. Tartaro KR. Tomasz A. Vogt KA. Volkmer GA. Wang SH. Wang Y. Weiner MP. Yu P. Begley RF. Rothberg JM. Genome sequencing in microfabricated high-density picolitre reactors. Nature. 2005;437:376. - PMC - PubMed
    1. Shendure J. Porreca GJ. Reppas NB. Lin X. McCutcheon JP. Rosenbaum AM. Wang MD. Zhang K. Mitra RD. Church GM. Accurate multiplex polony sequencing of an evolved bacterial genome. Science. 2005;309:1728. - PubMed
    1. Bentley DR. Balasubramanian S. Swerdlow HP. Smith GP. Milton J. Brown CG. Hall KP. Evers DJ. Barnes CL. Bignell HR. Boutell JM. Bryant J. Carter RJ. Keira Cheetham R. Cox AJ. Ellis DJ. Flatbush MR. Gormley NA. Humphray SJ. Irving LJ. Karbelashvili MS. Kirk SM. Li H. Liu X. Maisinger KS. Murray LJ. Obradovic B. Ost T. Parkinson ML. Pratt MR. Rasolonjatovo IM. Reed MT. Rigatti R. Rodighiero C. Ross MT. Sabot A. Sankar SV. Scally A. Schroth GP. Smith ME. Smith VP. Spiridou A. Torrance PE. Tzonev SS. Vermaas EH. Walter K. Wu X. Zhang L. Alam MD. Anastasi C. Aniebo IC. Bailey DM. Bancarz IR. Banerjee S. Barbour SG. Baybayan PA. Benoit VA. Benson KF. Bevis C. Black PJ. Boodhun A. Brennan JS. Bridgham JA. Brown RC. Brown AA. Buermann DH. Bundu AA. Burrows JC. Carter NP. Castillo N. Chiara E. Catenazzi M. Chang S. Neil Cooley R. Crake NR. Dada OO. Diakoumakos KD. Dominguez-Fernandez B. Earnshaw DJ. Egbujor UC. Elmore DW. Etchin SS. Ewan MR. Fedurco M. Fraser LJ. Fuentes Fajardo KV. Scott Furey W. George D. Gietzen KJ. Goddard CP. Golda GS. Granieri PA. Green DE. Gustafson DL. Hansen NF. Harnish K. Haudenschild CD. Heyer NI. Hims MM. Ho JT. Horgan AM. Hoschler K. Hurwitz S. Ivanov DV. Johnson MQ. James T. Huw Jones TA. Kang GD. Kerelska TH. Kersey AD. Khrebtukova I. Kindwall AP. Kingsbury Z. Kokko-Gonzales PI. Kumar A. Laurent MA. Lawley CT. Lee SE. Lee X. Liao AK. Loch JA. Lok M. Luo S. Mammen RM. Martin JW. McCauley PG. McNitt P. Mehta P. Moon KW. Mullens JW. Newington T. Ning Z. Ling Ng B. Novo SM. O'Neill MJ. Osborne MA. Osnowski A. Ostadan O. Paraschos LL. Pickering L. Pike AC. Pike AC. Chris Pinkard D. Pliskin DP. Podhasky J. Quijano VJ. Raczy C. Rae VH. Rawlings SR. Chiva Rodriguez A. Roe PM. Rogers J. Rogert Bacigalupo MC. Romanov N. Romieu A. Roth RK. Rourke NJ. Ruediger ST. Rusman E. Sanches-Kuiper RM. Schenker MR. Seoane JM. Shaw RJ. Shiver MK. Short SW. Sizto NL. Sluis JP. Smith MA. Ernest Sohna Sohna J. Spence EJ. Stevens K. Sutton N. Szajkowski L. Tregidgo CL. Turcatti G. Vandevondele S. Verhovsky Y. Virk SM. Wakelin S. Walcott GC. Wang J. Worsley GJ. Yan J. Yau L. Zuerlein M. Rogers J. Mullikin JC. Hurles ME. McCooke NJ. West JS. Oaks FL. Lundberg PL. Klenerman D. Durbin R. Smith AJ. Accurate whole human genome sequencing using reversible terminator chemistry. Nature. 2008;456:53. - PMC - PubMed