Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Mar;124(3):1168-72.
doi: 10.1172/JCI71691. Epub 2014 Feb 17.

T cell repertoire following autologous stem cell transplantation for multiple sclerosis

T cell repertoire following autologous stem cell transplantation for multiple sclerosis

Paolo A Muraro et al. J Clin Invest. 2014 Mar.

Abstract

Autologous hematopoietic stem cell transplantation (HSCT) is commonly employed for hematologic and non-hematologic malignancies. In clinical trials, HSCT has been evaluated for severe autoimmunity as a method to "reset" the immune system and produce a new, non-autoimmune repertoire. While the feasibility of eliminating the vast majority of mature T cells is well established, accurate and quantitative determination of the relationship of regenerated T cells to the baseline repertoire has been difficult to assess. Here, in a phase II study of HSCT for poor-prognosis multiple sclerosis, we used high-throughput deep TCRβ chain sequencing to assess millions of individual TCRs per patient sample. We found that HSCT has distinctive effects on CD4+ and CD8+ T cell repertoires. In CD4+ T cells, dominant TCR clones present before treatment were undetectable following reconstitution, and patients largely developed a new repertoire. In contrast, dominant CD8+ clones were not effectively removed, and the reconstituted CD8+ T cell repertoire was created by clonal expansion of cells present before treatment. Importantly, patients who failed to respond to treatment had less diversity in their T cell repertoire early during the reconstitution process. These results demonstrate that TCR characterization during immunomodulatory treatment is both feasible and informative, and may enable monitoring of pathogenic or protective T cell clones following HSCT and cellular therapies.

Trial registration: ClinicalTrials.gov NCT00288626.

PubMed Disclaimer

Figures

Figure 1
Figure 1. Proportional analysis of individual T cell clonal frequencies after HSCT.
(A) Model used for classification of clonal frequency, and application of this model to a representative CD4+ and CD8+ repertoire (see text for further details). (B) Proportion of clonal classes for each participant, as defined in A, among CD4+ and CD8+ cells at baseline and at month 12.
Figure 2
Figure 2. Longitudinal evaluation of T cell clones after HSCT.
(A) Evolution of individual clonal frequencies. “New” refers to clones not present before treatment; “expanded” clones have increased from 1+ or 2+ before treatment (see Figure 1A) to 3+ or 4+; and “persistent” clones have not changed their classification frequency. (B) Proportional representation of the clones that were found to be the 100 most frequent at 2 months after transplant in CD4+ (top) and CD8+ (bottom) T cells.
Figure 3
Figure 3. Relationship between TCR diversity and response to HSCT.
TCR diversity at 2 months after HSCT in CD4+ (top) and CD8+ (bottom) T cells divided by patients who remained stable (responder, n = 20 at baseline; and n = 19 at 2 months, as no sample was available for one patient) and who relapsed (non-responder, n = 4). The box represents the interquartile range, with the line being the median and the whiskers being 1.5× the interquartile range.

References

    1. Sykes M, Nikolic B. Treatment of severe autoimmune disease by stem-cell transplantation. Nature. 2005;435(7042):620–627. doi: 10.1038/nature03728. - DOI - PubMed
    1. Muraro PA, et al. Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients. J Exp Med. 2005;201(5):805–816. doi: 10.1084/jem.20041679. - DOI - PMC - PubMed
    1. de Kleer I, et al. Autologous stem cell transplantation for autoimmunity induces immunologic self-tolerance by reprogramming autoreactive T cells and restoring the CD4+CD25+ immune regulatory network. Blood. 2006;107(4):1696–1702. doi: 10.1182/blood-2005-07-2800. - DOI - PubMed
    1. Muraro PA, Douek DC. Renewing the T cell repertoire to arrest autoimmune aggression. Trends Immunol. 2006;27(2):61–67. doi: 10.1016/j.it.2005.12.003. - DOI - PubMed
    1. Dubinsky AN, Burt RK, Martin R, Muraro PA. T-cell clones persisting in the circulation after autologous hematopoietic SCT are undetectable in the peripheral CD34+ selected graft. Bone Marrow Transplant. 2010;45(2):325–331. doi: 10.1038/bmt.2009.139. - DOI - PubMed

Publication types

MeSH terms

Substances

Associated data