Parasite neuropeptide biology: Seeding rational drug target selection?
- PMID: 24533265
- PMCID: PMC3862435
- DOI: 10.1016/j.ijpddr.2011.10.004
Parasite neuropeptide biology: Seeding rational drug target selection?
Abstract
The rationale for identifying drug targets within helminth neuromuscular signalling systems is based on the premise that adequate nerve and muscle function is essential for many of the key behavioural determinants of helminth parasitism, including sensory perception/host location, invasion, locomotion/orientation, attachment, feeding and reproduction. This premise is validated by the tendency of current anthelmintics to act on classical neurotransmitter-gated ion channels present on helminth nerve and/or muscle, yielding therapeutic endpoints associated with paralysis and/or death. Supplementary to classical neurotransmitters, helminth nervous systems are peptide-rich and encompass associated biosynthetic and signal transduction components - putative drug targets that remain to be exploited by anthelmintic chemotherapy. At this time, no neuropeptide system-targeting lead compounds have been reported, and given that our basic knowledge of neuropeptide biology in parasitic helminths remains inadequate, the short-term prospects for such drugs remain poor. Here, we review current knowledge of neuropeptide signalling in Nematoda and Platyhelminthes, and highlight a suite of 19 protein families that yield deleterious phenotypes in helminth reverse genetics screens. We suggest that orthologues of some of these peptidergic signalling components represent appealing therapeutic targets in parasitic helminths.
Keywords: Anthelmintic; Nervous system; Neuromuscular; Receptor; Signalling.
Figures


Similar articles
-
Phylum-Spanning Neuropeptide GPCR Identification and Prioritization: Shaping Drug Target Discovery Pipelines for Nematode Parasite Control.Front Endocrinol (Lausanne). 2021 Sep 30;12:718363. doi: 10.3389/fendo.2021.718363. eCollection 2021. Front Endocrinol (Lausanne). 2021. PMID: 34659113 Free PMC article.
-
In silico analyses of neuropeptide-like protein (NLP) profiles in parasitic nematodes.Int J Parasitol. 2022 Jan;52(1):77-85. doi: 10.1016/j.ijpara.2021.07.002. Epub 2021 Aug 24. Int J Parasitol. 2022. PMID: 34450132 Free PMC article.
-
Pharmacological Profiling of a Brugia malayi Muscarinic Acetylcholine Receptor as a Putative Antiparasitic Target.Antimicrob Agents Chemother. 2023 Jan 24;67(1):e0118822. doi: 10.1128/aac.01188-22. Epub 2023 Jan 5. Antimicrob Agents Chemother. 2023. PMID: 36602350 Free PMC article.
-
Prospects for rational approaches to anthelmintic discovery.Parasitology. 1996;113 Suppl:S217-38. doi: 10.1017/s0031182000077994. Parasitology. 1996. PMID: 9051937 Review.
-
Microscopy and the helminth parasite.Micron. 2004;35(5):361-90. doi: 10.1016/j.micron.2003.12.001. Micron. 2004. PMID: 15006362 Review.
Cited by
-
Phylum-Spanning Neuropeptide GPCR Identification and Prioritization: Shaping Drug Target Discovery Pipelines for Nematode Parasite Control.Front Endocrinol (Lausanne). 2021 Sep 30;12:718363. doi: 10.3389/fendo.2021.718363. eCollection 2021. Front Endocrinol (Lausanne). 2021. PMID: 34659113 Free PMC article.
-
A Whole Genome Re-Sequencing Based GWA Analysis Reveals Candidate Genes Associated with Ivermectin Resistance in Haemonchus contortus.Genes (Basel). 2020 Mar 28;11(4):367. doi: 10.3390/genes11040367. Genes (Basel). 2020. PMID: 32231078 Free PMC article.
-
Nematode neuropeptides as transgenic nematicides.PLoS Pathog. 2017 Feb 27;13(2):e1006237. doi: 10.1371/journal.ppat.1006237. eCollection 2017 Feb. PLoS Pathog. 2017. PMID: 28241060 Free PMC article.
-
In silico analyses of neuropeptide-like protein (NLP) profiles in parasitic nematodes.Int J Parasitol. 2022 Jan;52(1):77-85. doi: 10.1016/j.ijpara.2021.07.002. Epub 2021 Aug 24. Int J Parasitol. 2022. PMID: 34450132 Free PMC article.
-
Profiling G protein-coupled receptors of Fasciola hepatica identifies orphan rhodopsins unique to phylum Platyhelminthes.Int J Parasitol Drugs Drug Resist. 2018 Apr;8(1):87-103. doi: 10.1016/j.ijpddr.2018.01.001. Epub 2018 Feb 5. Int J Parasitol Drugs Drug Resist. 2018. PMID: 29474932 Free PMC article.
References
-
- Abad P., Gouzy J., Aury J.M., Castagnone-Sereno P., Danchin E.G., Deleury E., Perfus-Barbeoch L., Anthouard V., Artiguenave F., Blok V.C., Caillaud M.C., Coutinho P.M., Dasilva C., De Luca F., Deau F., Esquibet M., Flutre T., Goldstone J.V., Hamamouch N., Hewezi T., Jaillon O., Jubin C., Leonetti P., Magliano M., Maier T.R., Markov G.V., McVeigh P., Pesole G., Poulain J., Robinson-Rechavi M., Sallet E., Ségurens B., Steinbach D., Tytgat T., Ugarte E., van Ghelder C., Veronico P., Baum T.J., Blaxter M., Bleve-Zacheo T., Davis E.L., Ewbank J.J., Favery B., Grenier E., Henrissat B., Jones J.T., Laudet V., Maule A.G., Quesneville H., Rosso M.N., Schiex T., Smant G., Weissenbach J., Wincker P. Genome sequence of the metazoan plant-parasitic nematode Meloidogyne incognita. Nat. Biotechnol. 2008;26:909–915. - PubMed
-
- Ahier A., Khayath N., Vicogne J., Dissous C. Insulin receptors and glucose uptake in the human parasite Schistosoma mansoni. Parasite. 2008;15:573–579. - PubMed
-
- Arena J.P., Liu K.K., Paress P.S., Schaeffer J.M., Cully D.F. Expression of a glutamate-activated chloride current in Xenopus oocytes injected with Caenorhabditis elegans RNA: evidence for modulation by avermectin. Brain Res. Mol. Brain Res. 1992;15:339–348. - PubMed
-
- Asada A., Orii H., Watanabe K., Tsubaki M. Planarian peptidylglycine-hydroxylating monooxygenase, a neuropeptide processing enzyme, colocalizes with cytochrome b561 along the central nervous system. FEBS J. 2005;272:942–955. - PubMed
-
- Atchison W.D., Geary T.G., Manning B., VandeWaa E.A., Thompson D.P. Comparative neuromuscular blocking actions of levamisole and pyrantel-type anthelmintics on rat and gastrointestinal nematode somatic muscle. Toxicol. Appl. Pharmacol. 1992;112:133–143. - PubMed
Publication types
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources