Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1988 Apr;36(4):429-43.
doi: 10.1002/jcb.240360411.

Aspects of signal transduction in stimulus exocytosis-coupling in Paramecium

Affiliations
Review

Aspects of signal transduction in stimulus exocytosis-coupling in Paramecium

B H Satir et al. J Cell Biochem. 1988 Apr.

Abstract

This paper deals with the detailed mechanisms of signal transduction that lead to exocytosis during regulative secretion induced by specific secretagogues in a eukaryotic cell, Paramecium tetraurelia. There are at least three cellular compartments involved in the process: I) the plasma membrane, which contains secretagogue receptors and other transmembrane proteins, II) the cytoplasms, particularly in the region between the cell and secretory vesicle membranes, where molecules may influence interactions of the membranes, and III) the secretory vesicle itself. The ciliated protozoan Paramecium tetraurelia is very well suited for the study of signal transduction events associated with exocytosis because this eukaryotic cell contains thousands of docked secretory vesicles (trichocysts) below the cell membrane which can be induced to release synchronously when triggered with secretagogue. This ensures a high signal-to-noise ratio for events associated with this process. Upon release the trichocyst membrane fuses with the cell membrane and the trichocyst content undergoes a Ca2+-dependent irreversible expansion. Secretory mutants are available which are blocked at different points in the signal transduction pathway. Aspects of the three components mentioned above that will be discussed here include a) the properties of the vesicle content, its pH, and its membrane; b) the role of phosphorylation/dephosphorylation of a cytosolic 63-kilodalton (kDa)Mr protein in membrane fusion; and c) how influx of extracellular Ca2+ required for exocytosis may take place via exocytic Ca2+ channels which may be associated with specific membrane microdomains (fusion rosettes).

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources