Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Mar;91(3):421-43.
doi: 10.1085/jgp.91.3.421.

Veratridine modifies open sodium channels

Affiliations

Veratridine modifies open sodium channels

S Barnes et al. J Gen Physiol. 1988 Mar.

Abstract

The state dependence of Na channel modification by the alkaloid neurotoxin veratridine was investigated with single-channel and whole-cell voltage-clamp recording in neuroblastoma cells. Several tests of whole-cell Na current behavior in the presence of veratridine supported the hypothesis that Na channels must be open in order to undergo modification by the neurotoxin. Modification was use dependent and required depolarizing pulses, the voltage dependence of production of modified channels was similar to that of normal current activation, and prepulses that caused inactivation of normal current had a parallel effect on the generation of modified current. This hypothesis was then examined directly at the single-channel level. Modified channel openings were easily distinguished from normal openings by their smaller current amplitude and longer burst times. The modification event was often seen as a sudden, dramatic reduction of current through an open Na channel and produced a somewhat flickery channel event having a mean lifetime of 1.6 s at an estimated absolute membrane potential of -45 mV (23 degrees C). The modified channel had a slope conductance of 4 pS, which was 20-25% the size of the slope conductance of normal channels with the 300 mM NaCl pipette solution used. Most modified channel openings were initiated by depolarizing pulses, began within the first 10 ms of the depolarizing step, and were closely associated with the prior opening of single normal Na channels, which supports the hypothesis that modification occurs from the normal open state.

PubMed Disclaimer

References

    1. J Gen Physiol. 1968 Feb;51(2):199-219 - PubMed
    1. Pflugers Arch. 1987 Sep;410(1-2):112-20 - PubMed
    1. Pflugers Arch. 1972;336(3):187-99 - PubMed
    1. Pflugers Arch. 1972;336(3):201-12 - PubMed
    1. Pflugers Arch. 1974 Jun 11;349(2):133-48 - PubMed

Publication types

MeSH terms