Effect of exogenous ATP upon inositol phosphate production, cationic fluxes and insulin release in pancreatic islet cells
- PMID: 2454675
- DOI: 10.1016/0167-4889(88)90182-6
Effect of exogenous ATP upon inositol phosphate production, cationic fluxes and insulin release in pancreatic islet cells
Abstract
Endogenous ATP is thought to play a key regulatory role in nutrient-stimulated insulin release. The present study deals with the effect of exogenous ATP and its stable analog alpha, beta-methylene ATP upon pancreatic islet function. Both alpha, beta-methylene ATP (5.0 microM to 0.2 mM) and ATP (0.3-3.0 mM) caused a rapid and concentration-related increase in insulin output by rat islets incubated or perfused at an intermediate concentration of D-glucose (8.3 mM). The effect of the ATP analog faded out at both lower and higher D-glucose concentrations. In the presence of 8.3 mM D-glucose, ATP also increased both 86Rb and 45Ca outflow from prelabelled islets. The cationic response to ATP persisted in the absence of extracellular Ca2+ and, hence, was reminiscent of that evoked by cholinergic agents. Like carbamylcholine, ATP caused a dose-related increase in the production of [3H]inositol phosphates from prelabelled islets or tumoral islet cells (RINm5F line). The latter effect was duplicated by alpha, beta-methylene ATP and unaffected by atropine. It is speculated that ATP, liberated together with insulin at the exocytotic site, might participate in a positive feedback control of insulin release.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Miscellaneous
