Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Apr;114(2):141-52.
doi: 10.1016/j.cmpb.2014.01.010. Epub 2014 Jan 21.

Automated detection of exudates and macula for grading of diabetic macular edema

Affiliations

Automated detection of exudates and macula for grading of diabetic macular edema

M Usman Akram et al. Comput Methods Programs Biomed. 2014 Apr.

Abstract

Medical systems based on state of the art image processing and pattern recognition techniques are very common now a day. These systems are of prime interest to provide basic health care facilities to patients and support to doctors. Diabetic macular edema is one of the retinal abnormalities in which diabetic patient suffers from severe vision loss due to affected macula. It affects the central vision of the person and causes total blindness in severe cases. In this article, we propose an intelligent system for detection and grading of macular edema to assist the ophthalmologists in early and automated detection of the disease. The proposed system consists of a novel method for accurate detection of macula using a detailed feature set and Gaussian mixtures model based classifier. We also present a new hybrid classifier as an ensemble of Gaussian mixture model and support vector machine for improved exudate detection even in the presence of other bright lesions which eventually leads to reliable classification of input retinal image in different stages of macular edema. The statistical analysis and comparative evaluation of proposed system with existing methods are performed on publicly available standard retinal image databases. The proposed system has achieved average value of 97.3%, 95.9% and 96.8% for sensitivity, specificity and accuracy respectively on both databases.

Keywords: Classification; Diabetic macular edema; Exudates; Macula; Retinal image analysis.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources