Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1967 Mar;74(1):18-44.
doi: 10.1007/BF00385169.

[On the plasmatic filaments in assimilate conducting cells, their development and fine structure]

[Article in German]
Affiliations

[On the plasmatic filaments in assimilate conducting cells, their development and fine structure]

[Article in German]
H D Behnke et al. Planta. 1967 Mar.

Abstract

Taking into account the literature on the so-called sieve-tube slime ("mictoplasm", "slime strands") and regarding its fine structure more in detail the term plasmatic filament ("Plasmafilament") is proposed and will be used in this paper to characterize the individual exceedingly fine subunit of the plasmatic network (or slime) in sieve elements. Up to now plasmatic filaments have mostly been erroneously called "fibrils". The dimension of a fibrill has now been defined anew and differentiated from its subunit "plasmatic filament".In the first part of these investigations some aspects of the development of plasmatic filaments and their spreading over the total lumen of Dioscorea sieve elements will be reported.Previous to the first appearance of filaments the later sieve element abounds in plasmatic components, the groundplasm being extremely rich in ribosomes (Fig. 1). The difference between young sieve elements and the neighbouring parenchyma cells is nearly imperceptible apart from a slight variation in ribosome density. Plastids are very useful in distinguishing these two cell types from each other. The development of osmiophilic inclusions that characterize sieve-element plastids in Dioscorea has already been initiated in these very young cells.The earliest stages in the formation of plasmatic filaments that up to now have been revealed in Dioscorea show masses of filaments, some short and granular in appearance (Fig. 2: *), some already elngated and filamentous (Fig. 2: F). After expanding over the entire cell those filaments still look like having their origin directly in groundplasm (Fig. 5). Elements of the ER-system and many ribosomes cross the plasmatic filaments during all developmental stages of their network, which is at no time surrounded by any membrane.In sieve elements of Dioscorea, Primula, Cuscuta and Cucumis our investigations furthermore yielded some detail on the filament substructure. A cross-sectioned plasmatic filament is composed of an osmiophilic outer ring with a light centre (Fig. 11) corresponding in a longitudinal view to two deeply contrasted outer layers and an inner one without any contrast (Fig. 8). An individual filament has an overall diameter of 120-150 Å and an up to now indeterminable length that exceeds at least several microns.The real nature of these fine structures will be discussed in relation to similar structures and their meaning in plant and animal cells.

PubMed Disclaimer

References

    1. Int Rev Cytol. 1964;16:61-131 - PubMed
    1. J Cell Biol. 1963 Apr;17:19-58 - PubMed
    1. Proc Natl Acad Sci U S A. 1966 Sep;56(3):888-94 - PubMed
    1. Proc Natl Acad Sci U S A. 1958 Jun;44(6):546-53 - PubMed
    1. Planta. 1966 Mar;71(1):15-9 - PubMed

Publication types