Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Feb 3:8:22.
doi: 10.3389/fnhum.2014.00022. eCollection 2014.

Broad-band Gaussian noise is most effective in improving motor performance and is most pleasant

Affiliations

Broad-band Gaussian noise is most effective in improving motor performance and is most pleasant

Carlos Trenado et al. Front Hum Neurosci. .

Abstract

Modern attempts to improve human performance focus on stochastic resonance (SR). SR is a phenomenon in non-linear systems characterized by a response increase of the system induced by a particular level of input noise. Recently, we reported that an optimum level of 0-15 Hz Gaussian noise applied to the human index finger improved static isometric force compensation. A possible explanation was a better sensorimotor integration caused by increase in sensitivity of peripheral receptors and/or of internal SR. The present study in 10 subjects compares SR effects in the performance of the same motor task and on pleasantness, by applying three Gaussian noises chosen on the sensitivity of the fingertip receptors (0-15 Hz mostly for Merkel receptors, 250-300 Hz for Pacini corpuscles and 0-300 Hz for all). We document that only the 0-300 Hz noise induced SR effect during the transitory phase of the task. In contrast, the motor performance was improved during the stationary phase for all three noise frequency bandwidths. This improvement was stronger for 0-300 Hz and 250-300 Hz than for 0-15 Hz noise. Further, we found higher degree of pleasantness for 0-300 Hz and 250-300 Hz noise bandwidths than for 0-15 Hz. Thus, we show that the most appropriate Gaussian noise that could be used in haptic gloves is the 0-300 Hz, as it improved motor performance during both stationary and transitory phases. In addition, this noise had the highest degree of pleasantness and thus reveals that the glabrous skin can also forward pleasant sensations.

Keywords: finger; force; frequency; humans; motor; noise; stochastic resonance.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Experimental setup. (A) Home-made index finger manipulandum producing a target static force (SF; 8% of individual maximum voluntary contraction) on which noise in three frequency bandwidths (0–15, 250–300, and 0–300 Hz) is added. Profile of the target SF in (E) and in (F). (B) Visual feedback of the finger position as a solid white dot within a green circle indicating the tolerance for position errors, displayed on a monitor in front of the subject. (C) Spectral power of the noise of the manipulandum in arbitrary units (au) for the three frequency bandwidths (0–15, 250–300, and 0–300 Hz). (D) Effect of the SR on the motor performance of one subject recorded prior to the experimental session for the three bandwidths and computed as the inverse of the mean absolute deviation of the finger position. Note the inverted U-shape like curve for all three bandwidths. During the experimental session only two noise levels were individually chosen, i.e., zero noise (ZN, black filled dots) and optimal noise (ON, filled dots for 0–15 Hz in turquoise for 0–15 Hz, in yellow for 250–300 Hz, and pink for 0–300 Hz). (E,F) Original curves for target force and finger position (representing the exerted force) for ZN (E) and ON (F) for the frequency bandwidth noise 0–300 Hz. Transitory phase of the task between markers T0 and T1 and stationary phase between markers T1 and T2. Note in the magnified position traces the better performance for ON than for ZN.
FIGURE 2
FIGURE 2
Detection threshold, optimal noise and pleasantness for the three frequency bandwidths: Upper panel (A) Detection threshold in box plots with interquartile range displayed as the length of the box, with the median as a line inside the box and the minimal and maximal values as vertical lines. Mean values shown as small unfilled circles within the boxplots. Higher detection threshold for 0–15 Hz compared to 250–300 Hz and 0–300 Hz bandwidths (**p = 0.002). (B) Boxplots for optimal noise showing similar noise levels for the three frequency bandwidths. (C) Higher degree of subjective pleasantness (percentage) for the 250–300 Hz and 0–300 Hz than for the 0–15 Hz noise bandwidth. *p = 0.02; **p = 0.003. Middle panel Graphs of detection threshold (DT) vs. Optimum noise (ON) for individual subjects corresponding to the three frequency bandwidths. The red line is the threshold. (D) 0–15 Hz; (E) 250–300 Hz and (F) 0–300 Hz. It is noticeable that for 250–300 and 0–300 Hz bandwidths all of the subjects exhibited supra-threshold SR (DTON) and six of them supra-threshold SR (DT < ON). Lower panel: (G) SEM bar graph depicting DT for each subject (S; 10 subjects) and for each frequency bandwidth. The color legend is the same as for the upper panel. Because the ON values are not averaged values there is no standard error for it. Note the higher standard error in DT for 0–15 Hz bandwidth.
FIGURE 3
FIGURE 3
Motor performance: mean absolute deviation (MAD) of the finger position for ZN and for ON for the three noise bandwidths during the transitory (left) and stationary (right) phases of the isometric compensation task. During the transitory phase, stochastic resonance (SR) effect with better performance only for ON0-300 Hz (*p = 0.01). During the stationary phase, SR effect for the three frequency bandwidths with best performance for ON250-300 Hz and ON0-300 Hz. *p = 0.006; **p = 0.005.

References

    1. Aihara T., Kitajo K., Nozaki D., Yamamoto Y. (2010). How does stochastic resonance work within the human brain? Psychophysics of internal and external noise. Chem. Phys. 375 616–624 10.1016/j.chemphys.2010.04.027 - DOI
    1. Berglund U., Berglund B. (1970). Adaptation and recovery in vibrotactile perception. Percept. Mot. Skills 30 843–853 10.2466/pms.1970.30.3.843 - DOI - PubMed
    1. Collins J. J., Chow C. C., Imhoff T. T. (1995). Stochastic resonance without tuning. Nature 376 236–238 10.1038/376236a0 - DOI - PubMed
    1. Collins J. J., Priplata A. A., Gravelle D. C., Niemi J., Harry J., Lipsitz L. A. (2003). Noise-enhanced human sensorimotor function. IEEE Eng. Med. Biol. 22 76–83 10.1109/MEMB.2003.1195700 - DOI - PubMed
    1. Costa M., Priplata A. A., Lipsitz L. A., Wu Z., Huang N. E., Goldberger A. L., et al. (2007). Noise and poise: enhancement of postural complexity in the elderly with a stochastic-resonance–based therapy. Europhys. Lett. 77 68008 10.1209/0295-5075/77/68008 - DOI - PMC - PubMed