Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Mar 1;74(5):1287-93.
doi: 10.1158/0008-5472.CAN-13-2825. Epub 2014 Feb 20.

Monocyte subpopulations in angiogenesis

Affiliations
Review

Monocyte subpopulations in angiogenesis

Heather J Dalton et al. Cancer Res. .

Abstract

Growing understanding of the role of the tumor microenvironment in angiogenesis has brought monocyte-derived cells into focus. Monocyte subpopulations are an increasingly attractive therapeutic target in many pathologic states, including cancer. Before monocyte-directed therapies can be fully harnessed for clinical use, understanding of monocyte-driven angiogenesis in tissue development and homeostasis, as well as malignancy, is required. Here, we provide an overview of the mechanisms by which monocytic subpopulations contribute to angiogenesis in tissue and tumor development, highlight gaps in our existing knowledge, and discuss opportunities to exploit these cells for clinical benefit.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Phenotypic diversity of monocyte subpopulations. Cells are shown with characteristic surface receptors, along with chemokines, cytokines and other characteristic factors when appropriate. Known pro-angiogenic factors are highlighted in red.

References

    1. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell. 2000;100:57–70. - PubMed
    1. Tammela T, Zarkada G, Wallgard E, Murtomaki A, Suchting S, Wirzenius M, et al. Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature. 2008;454:656–660. - PubMed
    1. Murdoch C, Muthana M, Coffelt SB, Lewis CE. The role of myeloid cells in the promotion of tumour angiogenesis. Nat Rev Cancer. 2008;8:618–631. - PubMed
    1. Wynn TA, Chawla A, Pollard JW. Macrophage biology in development, homeostasis and disease. Nature. 2013;496:445–455. - PMC - PubMed
    1. Mazzieri R, Pucci F, Moi D, Zonari E, Ranghetti A, Berti A, et al. Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer cell. 2011;19:512–526. - PubMed

Publication types