Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 Apr:398:441-73.
doi: 10.1113/jphysiol.1988.sp017052.

Effects of extracellular calcium on calcium movements of excitation-contraction coupling in frog skeletal muscle fibres

Affiliations

Effects of extracellular calcium on calcium movements of excitation-contraction coupling in frog skeletal muscle fibres

G Brum et al. J Physiol. 1988 Apr.

Abstract

1. The effect of low extracellular free calcium ion concentration ([Ca2+]o) on the transient changes in cytoplasmic [Ca2+] associated with membrane depolarization (Ca2+ transients) was studied on single cut skeletal muscle fibres of the frog, voltage clamped in a double-Vaseline-gap chamber. The Ca2+ transients were monitored with the dye Antipyrylazo III diffused intracellularly. 2. The Ca2+ transients were substantially reduced in external salines with low [Ca2+] (10(-5) M or less and Mg2+ substituted for Ca2+). This decrease was more noticeable at late times during 100 ms or longer depolarizing pulses. 3. The rates of the processes that remove Ca2+ from the myoplasmic solution were not altered by the low [Ca2+]o. This implies that the input flux of Ca2+ into the myoplasm was reduced. 4. The Ca2+ input flux, equal to release flux from the sarcoplasmic reticulum (SR) plus Ca2+ influx via the T-tubule membrane Ca2+ channel, was derived from the Ca2+ transient. In low [Ca2+]o the peak input flux was reduced by 45% (n = 16 fibres) and decayed more rapidly during a depolarizing pulse. 5. The reduction in Ca2+ influx via the T-tubule membrane Ca2+ channel due to the reduced [Ca2+]o could not account for more than 5% of the reduction in Ca2- input flux, which was thus interpreted as an actual reduction of release from the SR. 6. The inward (T-tubular) Ca2+ current was not associated with this effect of extracellular Ca2+ as the effect was voltage independent at high intracellular voltages at which the Ca2+ inward current was strongly voltage dependent. 7. Low [Ca2+]o made Ca2+ release more readily inactivatable; the effect of low [Ca2-]o is best described as a left shift by 29 mV of the 'inactivation curve' of Ca2+ release, relating peak release flux to membrane holding potential. 8. The reduction of Ca2+ release by low [Ca2+]o was not accompanied by changes in the voltage dependence of Ca2+ release or in the threshold voltage for just-detectable release. 9. The results are consistent with a primary effect of Ca2+ on the T-tubular-membrane voltage sensor of excitation-contraction coupling.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Biochem Pharmacol. 1980 Sep 15;29(18):2399-406 - PubMed
    1. J Physiol. 1978 Oct;283:197-209 - PubMed
    1. J Physiol. 1983 Aug;341:495-505 - PubMed
    1. J Physiol. 1960 Jun;151:518-38 - PubMed
    1. Biophys J. 1981 Dec;36(3):607-21 - PubMed

Publication types

LinkOut - more resources