Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1988 Aug;2(11):2670-6.
doi: 10.1096/fasebj.2.11.2456243.

Mechanisms of action of calcium-mobilizing agonists: some variations on a young theme

Affiliations
Review

Mechanisms of action of calcium-mobilizing agonists: some variations on a young theme

J H Exton. FASEB J. 1988 Aug.

Abstract

It is now accepted that many hormones and neurotransmitters exert their effects through G protein-mediated activation of a phospholipase C, which breaks down phosphatidylinositol bisphosphate. This releases inositol trisphosphate, which mobilizes intracellular calcium, and diacylglycerol, which, in turn, activates protein kinase C. However, recent evidence indicates that other mechanisms are involved. In some cells, the increases in cytosolic calcium elicited within 1-2 s by high concentrations of agonists or at later times by low, physiological concentrations of agonists occur without any detectable changes in inositol phosphates and calcium mobilization, and result from the opening of plasma membrane channels that are permeable to Ca2+. This response appears to be mediated more directly by G proteins. These findings question the postulated roles of inositol phosphates and calcium mobilization in the stimulation of calcium influx. Measurements of the mass and fatty acid composition of the inositol phospholipids and of the diacylglycerol and phosphatidic acid generated by agonists in several cell types indicate that phosphatidylinositol bisphosphate is probably a minor source of these lipids. On the other hand, measurements of phosphatidylcholine, choline, and phosphocholine indicate that this phospholipid is a major source, and that its breakdown involves both phospholipase C and D. These findings indicate that phosphatidylcholine breakdown may be more important than phosphoinositide hydrolysis in the regulation of protein kinase C and perhaps other cell functions.

PubMed Disclaimer

LinkOut - more resources