Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2015 Apr;41(4):623-30.
doi: 10.3109/03639045.2014.891128. Epub 2014 Feb 24.

Film-coated matrix mini-tablets for the extended release of a water-soluble drug

Affiliations
Comparative Study

Film-coated matrix mini-tablets for the extended release of a water-soluble drug

Faiezah A A Mohamed et al. Drug Dev Ind Pharm. 2015 Apr.

Abstract

Extended release (ER) of water-soluble drugs from hydroxypropylmethylcellulose (HPMC) matrix mini-tablets (mini-matrices) is difficult to achieve due to the large surface area to volume ratio of the mini matrices. Therefore, the aims of this study were to control the release of a water-soluble drug (theophylline) from mini-matrices by applying ER ethylcellulose film coating (Surelease®), and to assess the effects of Surelease®:pore former (Opadry®) ratio and coating load on release rates. Mini-matrices containing 40%w/w HPMC K100M CR were coated with 100:0, 85:15, 80:20, 75:25 or 70:30 Surelease®:Opadry® to different coating weight gains (6-20%). Non-matrix mini-tablets were also produced and coated with 80:20 Surelease®:Opadry® to different coating weight gains. At low coating weight gains, nonmatrix mini-tablets released the entire drug within 0.5 h, while at high coating weight gains only a very small amount (<5%) of drug was released after 12 h. The gel formation of HPMC prevented disintegration of mini-matrices at low coating weight gains but contributed to rupture of the film even at high coating weight gains. As a result, drug release from mini-matrices was slower than that from nonmatrix mini-tablets at low coating weight gains, yet faster at high coating weight gains. An increase in the lag time of drug release from mini-matrices was observed as the concentration of Opadry® reduced or the coating weight gain increased. This study has demonstrated the possibility of extending the release of a water-soluble drug from HPMC mini-matrices by applying ER film coating with appropriate levels of pore former and coating weight gains to tailor the release rate.

Keywords: Ethylcellulose; HPMC; film coating; hypromellose; mini-matrices; theophylline.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources