Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1988 May;25(2):419-38.
doi: 10.1016/0306-4522(88)90249-7.

Immunocytochemical studies on the basal ganglia and substantia nigra in Parkinson's disease and Huntington's chorea

Affiliations

Immunocytochemical studies on the basal ganglia and substantia nigra in Parkinson's disease and Huntington's chorea

C M Waters et al. Neuroscience. 1988 May.

Abstract

The basal ganglia and substantia nigra, taken from control human brain and from patients dying with a diagnosis of Parkinson's disease or Huntington's chorea, were analysed with histochemical and biochemical techniques. The pigmented neurons of the substantia nigra pars compacta possess tyrosine hydroxylase immunoreactivity and are disposed in three major layers, alpha, beta and gamma. This pattern became obscured in choreic brains by the severe shrinkage of the nigra, but total numbers of pigmented neurons were within the normal range. In contrast, pigmented neurons were lost from all layers of the substantia nigra in Parkinson's disease, although examination of cases with minimal cell loss suggested that an internal part of the lateral alpha sub-layer was most severely and consistently affected. A dopaminergic projection between this internal part of the alpha sub-layer and the putamen was suggested by the preferential loss of catecholamines from the putamen in Parkinson's disease. The distribution of the peptides, substance P, methionine-enkephalin and dynorphin 1-17 were mapped immunohistochemically within the substantia nigra. The different patterns of immunoreactive axons and terminals were found to be extensive, at least partially overlapping, and largely avoided the region of the pigmented perikarya of the alpha sub-layer and nucleus paranigralis. All peptides were depleted in choreic substantia nigra, reflecting the degeneration of the striatonigral pathway. However, concentrations of enkephalin-like immunoreactivity were increased within the interpeduncular nucleus. In Parkinson's disease there was a loss of enkephalin- and dynorphin-like immunoreactivity from the substantia nigra but a fall in substance P-like immunoreactivity was only detected by radioimmunoassay, not by immunocytochemistry. Peptide immunoreactivity was also reduced within choreic basal ganglia. However, no gross changes were found in peptide staining of the parkinsonian basal ganglia. In summary we have reported a number of changes in peptide-containing pathways in human degenerative disorders that may reflect the degeneration of neuronal pathways either as a primary event or secondary to initial lesion. We have also emphasized the sensitivity of the alpha sub-layer of nigral neurons to damage in Parkinson's disease. We suggest that the lower density of peptidergic fibres in the area of the perikarya may contribute to the susceptibility of these neurons to damage.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources