Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2013;4 Suppl 1(Suppl 1):S11.
doi: 10.1186/scrt372. Epub 2013 Dec 20.

All-human microphysical model of metastasis therapy

Review

All-human microphysical model of metastasis therapy

Sarah E Wheeler et al. Stem Cell Res Ther. 2013.

Abstract

The vast majority of cancer mortalities result from distant metastases. The metastatic microenvironment provides unique protection to ectopic tumors as the primary tumors often respond to specific agents. Although significant interventional progress has been made on primary tumors, the lack of relevant accessible model in vitro systems in which to study metastases has plagued metastatic therapeutic development--particularly among micrometastases. A real-time, all-human model of metastatic seeding and cancer cells that recapitulate metastatic growth and can be probed in real time by a variety of measures and challenges would provide a critical window into the pathophysiology of metastasis and pharmacology of metastatic tumor resistance. To achieve this we are advancing our microscale bioreactor that incorporates human hepatocytes, human nonparenchymal liver cells, and human breast cancer cells to mimic the hepatic niche in three dimensions with functional tissue. This bioreactor is instrumented with oxygen sensors, micropumps capable of generating diurnally varying profiles of nutrients and hormones, while enabling real-time sampling. Since the liver is a major metastatic site for a wide variety of carcinomas and other tumors, this bioreactor uniquely allows us to more accurately recreate the human metastatic microenvironment and probe the paracrine effects between the liver parenchyma and metastatic cells. Further, as the liver is the principal site of xenobiotic metabolism, this reactor will help us investigate the chemotherapeutic response within a metabolically challenged liver microenvironment. This model is anticipated to yield markers of metastatic behavior and pharmacologic metabolism that will enable better clinical monitoring, and will guide the design of clinical studies to understand drug efficacy and safety in cancer therapeutics. This highly instrumented bioreactor format, hosting a growing tumor within a microenvironment and monitoring its responses, is readily transferable to other organs, giving this work impact beyond the liver.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Micrometastasis progression in standard and diurnal cultures. Conceptual view of (top) micrometastasis progression in three-dimensional perfused liver microreactors maintained with controlled circadian profiles of key components of the portal circulation (nutrients, insulin) and the systemic circulation (cortisol) compared with (bottom) micrometastasis progression in standard culture with daily medium changes. Approximate relative values of diurnal fluctuations in the tissue microenvironment are shown for each case; absolute magnitudes of cortisol and insulin are conventionally supraphysiological in the standard culture. Micrometastases are created by seeding individual tumor cells within the parenchyma of the tissue mimic, where flow of oxygenated culture medium into the tissue supports survival and proliferation. Carcinoma cells may re-express cadherin and integrate into the tissue, or may exhibit unrestrained growth. As tumors grow, the tissue becomes hypoxic, stromal cells proliferate, and the mix of cytokines and acute phase proteins becomes altered. Parameters listed (nutrient and hormone levels, cytokine levels, oxygen) are measured noninvasively to assess the progression of metastases. A premise is that the uncontrolled metastases stimulated by supraphysiological levels of hormones and nutrients in standard culture will be easier to eradicate by traditional chemotherapeutic agents that target proliferation, and thus fail to represent the full spectrum of behaviors of clinically important metastases compared with the case of controlled diurnal stimulation. PO2, oxygen partial pressure.

References

    1. Cameron MD, Schmidt EE, Kerkvliet N, Nadkarni KV, Morris VL, Groom AC, Chambers AF, MacDonald IC. Temporal progression of metastasis in lung: cell survival, dormancy, and location dependence of metastatic inefficiency. Cancer Res. 2000;4:2541–2546. - PubMed
    1. Luzzi KJ, MacDonald IC, Schmidt EE, Kerkvliet N, Morris VL, Chambers AF, Groom AC. Multistep nature of metastatic inefficiency: dormancy of solitary cells after successful extravasation and limited survival of early micrometastases. Am J Pathol. 1998;4:865–873. doi: 10.1016/S0002-9440(10)65628-3. - DOI - PMC - PubMed
    1. Gonzalez-Angulo AM, Morales-Vasquez F, Hortobagyi GN. Overview of resistance to systemic therapy in patients with breast cancer. Adv Exp Med Biol. 2007;4:1–22. doi: 10.1007/978-0-387-74039-3_1. - DOI - PubMed
    1. Wells A, Yates C, Shepard CR. E-cadherin as an indicator of mesenchymal to epithelial reverting transitions during the metastatic seeding of disseminated carcinomas. Clin Exp Metastasis. 2008;4:621–628. doi: 10.1007/s10585-008-9167-1. - DOI - PMC - PubMed
    1. Aguirre-Ghiso JA. Models, mechanisms and clinical evidence for cancer dormancy. Nat Rev Cancer. 2007;4:834–846. doi: 10.1038/nrc2256. - DOI - PMC - PubMed

Publication types

MeSH terms