Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2014 Apr;92(2):413-34.
doi: 10.1111/mmi.12567. Epub 2014 Mar 17.

Histone H3K9 and H3K27 methylation regulates fungal alkaloid biosynthesis in a fungal endophyte-plant symbiosis

Affiliations
Free article

Histone H3K9 and H3K27 methylation regulates fungal alkaloid biosynthesis in a fungal endophyte-plant symbiosis

Tetsuya Chujo et al. Mol Microbiol. 2014 Apr.
Free article

Abstract

Epichloё festucae is a filamentous fungus that forms a mutually beneficial symbiotic association with Lolium perenne. This endophyte synthesizes bioprotective lolitrems (ltm) and ergot alkaloids (eas) in planta but the mechanisms regulating expression of the corresponding subtelomeric gene clusters are not known. We show here that the status of histone H3 lysine 9 and lysine 27 trimethylation (H3K9me3/H3K27me3) at these alkaloid gene loci are critical determinants of transcriptional activity. Using ChIP-qPCR we found that levels of H3K9me3 and H3K27me3 were reduced at these loci in plant infected tissue compared to axenic culture. Deletion of E. festucae genes encoding the H3K9- (ClrD) or H3K27- (EzhB) methyltransferases led to derepression of ltm and eas gene expression under non-symbiotic culture conditions and a further enhancement of expression in the double deletion mutant. These changes in gene expression were matched by corresponding reductions in H3K9me3 and H3K27me3 marks. Both methyltransferases are also important for the symbiotic interaction between E. festucae and L. perenne. Our results show that the state of H3K9 and H3K27 trimethylation of E. festucae chromatin is an important regulatory layer controlling symbiosis-specific expression of alkaloid bioprotective metabolites and the ability of this symbiont to form a mutualistic interaction with its host.

PubMed Disclaimer

Publication types

MeSH terms

Associated data

LinkOut - more resources