Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Jan 21;20(3):613-29.
doi: 10.3748/wjg.v20.i3.613.

Helicobacter pylori and autoimmune disease: cause or bystander

Affiliations
Review

Helicobacter pylori and autoimmune disease: cause or bystander

Daniel S Smyk et al. World J Gastroenterol. .

Abstract

Helicobacter pylori (H. pylori) is the main cause of chronic gastritis and a major risk factor for gastric cancer. This pathogen has also been considered a potential trigger of gastric autoimmunity, and in particular of autoimmune gastritis. However, a considerable number of reports have attempted to link H. pylori infection with the development of extra-gastrointestinal autoimmune disorders, affecting organs not immediately relevant to the stomach. This review discusses the current evidence in support or against the role of H. pylori as a potential trigger of autoimmune rheumatic and skin diseases, as well as organ specific autoimmune diseases. We discuss epidemiological, serological, immunological and experimental evidence associating this pathogen with autoimmune diseases. Although over one hundred autoimmune diseases have been investigated in relation to H. pylori, we discuss a select number of papers with a larger literature base, and include Sjögrens syndrome, rheumatoid arthritis, systemic lupus erythematosus, vasculitides, autoimmune skin conditions, idiopathic thrombocytopenic purpura, autoimmune thyroid disease, multiple sclerosis, neuromyelitis optica and autoimmune liver diseases. Specific mention is given to those studies reporting an association of anti-H. pylori antibodies with the presence of autoimmune disease-specific clinical parameters, as well as those failing to find such associations. We also provide helpful hints for future research.

Keywords: Autoimmunity; Gastritis; Helicobacter pylori; Infection; Mimicry; Rheumatology.

PubMed Disclaimer

Figures

Figure 1
Figure 1
A “multiple hit” molecular mimicry mechanism involving microbial mimics originated from Helicobacter pylori and other microbes linked with primary biliary cirrhosis. The major autoepitope of primary biliary cirrhosis-specific anti-mitochondrial antibodies (PDC-E2, pyruvate dehydrogenase complex) shares amino acid similarities with 4 microbial mimics from Helicobacter pylori (H. pylori)[142], N. aromaticivorans[154], L. delbrueckii[155,156], and E. coli[140,157,158]. The working hypothesis is that exposure of susceptible individuals to infections caused by these microbial agents will initiate humoral and cellular immune responses against microbial epitopes (in our case, these will be those sharing similarity with the self-epitope). Antibodies or T-cells against the microbial mimics may then cross-react with the human autoepitope initiating an autoreactive immune response which could lead to the induction of cellular damage and the perpetuation of autoimmunity (and can cause autoimmune disease). Experimental data so far provided demonstrate the existence of cross-reactive responses between self and microbial peptides from E. coli, N. amoraticivorans, and L. delbrueckii. However, experimental testing has shown that the H. pylori mimic (from urease beta) is not a target of cross-reactive responses specifically present in primary biliary cirrhosis[159]. The prevailing notion is that the mimic from H. pylori does not share amino acid similarity to an extent that could initiate cross-reactive response. On the contrary, the other microbial mimics have sufficient homologies with the human autoepitope and can promote molecular mimicry-based immune responses against self.

Similar articles

Cited by

References

    1. Smyk D, Rigopoulou EI, Baum H, Burroughs AK, Vergani D, Bogdanos DP. Autoimmunity and environment: am I at risk? Clin Rev Allergy Immunol. 2012;42:199–212. - PubMed
    1. Shoenfeld Y, Blank M, Abu-Shakra M, Amital H, Barzilai O, Berkun Y, Bizzaro N, Gilburd B, Zandman-Goddard G, Katz U, et al. The mosaic of autoimmunity: prediction, autoantibodies, and therapy in autoimmune diseases--2008. Isr Med Assoc J. 2008;10:13–19. - PubMed
    1. Shoenfeld Y, Gilburd B, Abu-Shakra M, Amital H, Barzilai O, Berkun Y, Blank M, Zandman-Goddard G, Katz U, Krause I, et al. The mosaic of autoimmunity: genetic factors involved in autoimmune diseases--2008. Isr Med Assoc J. 2008;10:3–7. - PubMed
    1. Shoenfeld Y, Zandman-Goddard G, Stojanovich L, Cutolo M, Amital H, Levy Y, Abu-Shakra M, Barzilai O, Berkun Y, Blank M, et al. The mosaic of autoimmunity: hormonal and environmental factors involved in autoimmune diseases--2008. Isr Med Assoc J. 2008;10:8–12. - PubMed
    1. Bogdanos DP, Smyk DS, Invernizzi P, Rigopoulou EI, Blank M, Pouria S, Shoenfeld Y. Infectome: a platform to trace infectious triggers of autoimmunity. Autoimmun Rev. 2013;12:726–740. - PMC - PubMed

MeSH terms

Substances