Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2014 Feb 12:5:4.
doi: 10.3389/fgene.2014.00004. eCollection 2014.

Evolutionary diversifications of plants on the Qinghai-Tibetan Plateau

Affiliations
Review

Evolutionary diversifications of plants on the Qinghai-Tibetan Plateau

Jun Wen et al. Front Genet. .

Abstract

The Qinghai-Tibetan Plateau (QTP) is the highest and one of the most extensive plateaus in the world. Phylogenetic, phylogeographic, and ecological studies support plant diversifications on the QTP through multiple mechanisms such as allopatric speciation via geographic isolation, climatic oscillations and divergences, pollinator-mediated isolation, diploid hybridization and introgression, and allopolyploidy. These mechanisms have driven spectacular radiations and/or species diversifications in various groups of plants such as Pedicularis L., Saussurea DC., Rhododendron L., Primula L., Meconopsis Vig., Rhodiola L., and many lineages of gymnosperms. Nevertheless, much work is needed toward understanding the evolutionary mechanisms of plant diversifications on the QTP. Well-sampled biogeographic analyses of the QTP plants in the broad framework of the Northern Hemisphere as well as the Southern Hemisphere are still relatively few and should be encouraged in the next decade. This paper reviews recent evidence from phylogenetic and biogeographic studies in plants, in the context of rapid radiations, mechanisms of species diversifications on the QTP, and the biogeographic significance of the QTP in the broader context of both the Northern and Southern Hemisphere biogeography. Integrative multidimensional analyses of phylogeny, morphological innovations, geography, ecology, development, species interactions and diversifications, and geology are needed and should shed insights into the patterns of evolutionary assembly and radiations in this fascinating region.

Keywords: QTP; Qinghai-Tibetan Plateau; allopatric speciation; biogeography; evolutionary radiations; vicariance.

PubMed Disclaimer

Figures

FIGURE 1
FIGURE 1
Geographic location of the Qinghai-Tibetan Plateau (A) and representative plant groups: (B) Rhododendron roxieanum Forrest ex W.W.Sm.; (C) Rhododendron wardii W.W.Sm.; (D) Rheum nobile Hook.f. & Thoms., showing “glasshouse-like” morphology; (E) Saussurea laniceps Hand.-Mazz., showing “snow-ball” morphology;(F) Meconopsis betonicifolia Franch.; (G) Pedicularis siphonantha D.Don var. delavayi (Franch. ex Maxim.) P.C.Tsoong; and (H) Rhodiola alsia (Fröd.) Fu (photo credit: B,C,G by H. Sun; D,F by J. Wen; E by B. Song; and H by J. Q. Zhang).
FIGURE 2
FIGURE 2
Major patterns of biogeographic diversification of plants on the Qinghai-Tibetan Plateau: (A) the QTP as a biogeographic source area in Eurasia with examples of Gentiana sect. Cruciata (Wang et al., 2004) and Hippophae rhamnoides (Jia et al., 2012); (B) close biogeographic connections of the QTP with Mediterranean Eurasia, as exemplified by Mandragora (Tu et al., 2010); (C) Hengduan–Himalayan forest regions of the QTP showing close biogeographic relationships with Arcto-Tertiary floristic elements in eastern Asia, as exemplified by the radiation of Maianthemum on the QTP following the migration from the Sino-Japanese floristic region (Meng et al., 2008); (D) the QTP and western Cordillera forest region of western North American, as shown in Kelloggia (Nie et al., 2005b); (E) migration of the QTP plants from Central Asia, as inferred from Solms-laubachia (Yue et al., 2009); and (F) the QTP as a major biogeographic barrier for plant diversification in Eurasia, as shown by examples of two Mediterranean–eastern Asian disjunctions in Pistacia (Yi et al., 2008; Xie et al., 2014).

References

    1. Adams R. P. (2008). Junipers of the World: the Genus Juniperus, 2nd Edn. Vancouver, BC: Trafford Publishing
    1. An Z. S., Kutzbach J. E., Prell W. L., Port S. C. (2001). Evolution of Asian monsoons and phased uplift of the Himalayan–Tibetan Plateau since late Miocene times. Nature 411 62–66 10.1038/35075035 - DOI - PubMed
    1. Baird N. A., Etter P. D., Atwood T. S., Currey M. C., Shiver A. L., Lewis Z. A., et al. (2008). Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3:e3376 10.1371/journal.pone.0003376 - DOI - PMC - PubMed
    1. Blöch C. Dickoré, W. B., Samuel R., Stuessy T. (2010). Molecular phylogeny of the Edelweiss (Leontopodium, Asteraceae–Gnaphalieae). Edinb. J. Bot. 67 235–264 10.1017/S0960428610000065 - DOI
    1. Bouillé M., Senneville S., Bousquet J. (2011). Discordant mtDNA and cpDNA phylogenies indicate geographic speciation and reticulation as driving factors for the diversification of the genus Picea. Tree Genet. Genomes 7 469–484 10.1007/s11295-010-0349-z - DOI

LinkOut - more resources