Identification and initial functional characterization of a human vascular cell-enriched long noncoding RNA
- PMID: 24578380
- PMCID: PMC4024079
- DOI: 10.1161/ATVBAHA.114.303240
Identification and initial functional characterization of a human vascular cell-enriched long noncoding RNA
Abstract
Objective: Long noncoding RNAs (lncRNAs) represent a rapidly growing class of RNA genes with functions related primarily to transcriptional and post-transcriptional control of gene expression. There is a paucity of information about lncRNA expression and function in human vascular cells. Thus, we set out to identify novel lncRNA genes in human vascular smooth muscle cells and to gain insight into their role in the control of smooth muscle cell phenotypes.
Approach and results: RNA sequencing (RNA-seq) of human coronary artery smooth muscle cells revealed 31 unannotated lncRNAs, including a vascular cell-enriched lncRNA (Smooth muscle and Endothelial cell-enriched migration/differentiation-associated long NonCoding RNA [SENCR]). Strand-specific reverse transcription polymerase chain reaction (PCR) and rapid amplification of cDNA ends indicate that SENCR is transcribed antisense from the 5' end of the FLI1 gene and exists as 2 splice variants. RNA fluorescence in situ hybridization and biochemical fractionation studies demonstrate SENCR is a cytoplasmic lncRNA. Consistent with this observation, knockdown studies reveal little to no cis-acting effect of SENCR on FLI1 or neighboring gene expression. RNA-seq experiments in smooth muscle cells after SENCR knockdown disclose decreased expression of Myocardin and numerous smooth muscle contractile genes, whereas several promigratory genes are increased. Reverse transcription PCR and Western blotting experiments validate several differentially expressed genes after SENCR knockdown. Loss-of-function studies in scratch wound and Boyden chamber assays support SENCR as an inhibitor of smooth muscle cell migration.
Conclusions: SENCR is a new vascular cell-enriched, cytoplasmic lncRNA that seems to stabilize the smooth muscle cell contractile phenotype.
Keywords: RNA sequence; RNA, long noncoding; cell migration; endothelial cells; myocytes, smooth muscle.
© 2014 American Heart Association, Inc.
Figures







Comment in
-
The smooth long noncoding RNA SENCR.Arterioscler Thromb Vasc Biol. 2014 Jun;34(6):1124-5. doi: 10.1161/ATVBAHA.114.303504. Arterioscler Thromb Vasc Biol. 2014. PMID: 24828518 No abstract available.
Similar articles
-
LncRNA SENCR overexpression attenuated the proliferation, migration and phenotypic switching of vascular smooth muscle cells in aortic dissection via the miR-206/myocardin axis.Nutr Metab Cardiovasc Dis. 2022 Jun;32(6):1560-1570. doi: 10.1016/j.numecd.2022.03.004. Epub 2022 Mar 8. Nutr Metab Cardiovasc Dis. 2022. PMID: 35351345
-
MYOSLID Is a Novel Serum Response Factor-Dependent Long Noncoding RNA That Amplifies the Vascular Smooth Muscle Differentiation Program.Arterioscler Thromb Vasc Biol. 2016 Oct;36(10):2088-99. doi: 10.1161/ATVBAHA.116.307879. Epub 2016 Jul 21. Arterioscler Thromb Vasc Biol. 2016. PMID: 27444199 Free PMC article.
-
Preliminary study on the mechanism of long noncoding RNA SENCR regulating the proliferation and migration of vascular smooth muscle cells.J Cell Physiol. 2020 Dec;235(12):9635-9643. doi: 10.1002/jcp.29775. Epub 2020 May 13. J Cell Physiol. 2020. PMID: 32401347
-
11q24.2q24.3 microdeletion in two families presenting features of Jacobsen syndrome, without intellectual disability: Role of FLI1, ETS1, and SENCR long noncoding RNA.Am J Med Genet A. 2019 Jun;179(6):993-1000. doi: 10.1002/ajmg.a.61113. Epub 2019 Mar 19. Am J Med Genet A. 2019. PMID: 30888095 Review.
-
Functional Long Non-coding RNAs in Vascular Smooth Muscle Cells.Curr Top Microbiol Immunol. 2016;394:127-41. doi: 10.1007/82_2015_441. Curr Top Microbiol Immunol. 2016. PMID: 25910717 Review.
Cited by
-
Epigenetic regulation in myocardial infarction: Non-coding RNAs and exosomal non-coding RNAs.Front Cardiovasc Med. 2022 Nov 10;9:1014961. doi: 10.3389/fcvm.2022.1014961. eCollection 2022. Front Cardiovasc Med. 2022. PMID: 36440025 Free PMC article. Review.
-
Polymorphic variants of IGF2BP3 and SENCR have an impact on predisposition and/or progression of Ewing sarcoma.Front Oncol. 2022 Oct 21;12:968884. doi: 10.3389/fonc.2022.968884. eCollection 2022. Front Oncol. 2022. PMID: 36338681 Free PMC article.
-
Long Noncoding RNAs CARMN, LUCAT1, SMILR, and MALAT1 in Thoracic Aortic Aneurysm: Validation of Biomarkers in Clinical Samples.Dis Markers. 2020 Jun 17;2020:8521899. doi: 10.1155/2020/8521899. eCollection 2020. Dis Markers. 2020. PMID: 32655720 Free PMC article.
-
Progress and trends in myocardial infarction-related long non-coding RNAs: a bibliometric analysis.Front Mol Biosci. 2024 Jul 29;11:1382772. doi: 10.3389/fmolb.2024.1382772. eCollection 2024. Front Mol Biosci. 2024. PMID: 39135912 Free PMC article. Review.
-
Deciphering Non-coding RNAs in Cardiovascular Health and Disease.Front Cardiovasc Med. 2018 Jul 2;5:73. doi: 10.3389/fcvm.2018.00073. eCollection 2018. Front Cardiovasc Med. 2018. PMID: 30013975 Free PMC article. Review.
References
-
- Ohno S. So much "junk" DNA in our genome. Brookhaven Symp Biol. 1972;23:366–370. - PubMed
-
- Okazaki Y, Furuno M, Kasukawa T, et al. Analysis of the mouse transcriptome based on functional annotation of 60,770 full-length cdnas. Nature. 2002;420:563–573. - PubMed
-
- Kapranov P, Cawley SE, Drenkow J, Bekiranov S, Strausberg RL, Fodor SPA, Gingeras TR. Large-scale transcriptional activity in chromosomes 21 and 22. Science. 2002;296:916–919. - PubMed
-
- Carninci P, Kasukawa T, Katayama S, et al. The transcriptional landscape of the mammalian genome. Science. 2005;309:1559–1563. - PubMed
-
- Cheng J, Kapranov P, Drenkow J, et al. Transcriptional maps of 10 human chromosomes at 5-nucleotide resolution. Science. 2005;308:1149–1154. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases