Geodesic distances to landmarks for dense correspondence on ensembles of complex shapes
- PMID: 24579119
- PMCID: PMC4156012
- DOI: 10.1007/978-3-642-40763-5_3
Geodesic distances to landmarks for dense correspondence on ensembles of complex shapes
Abstract
Establishing correspondence points across a set of biomedical shapes is an important technology for a variety of applications that rely on statistical analysis of individual subjects and populations. The inherent complexity (e.g. cortical surface shapes) and variability (e.g. cardiac chambers) evident in many biomedical shapes introduce significant challenges in finding a useful set of dense correspondences. Application specific strategies, such as registration of simplified (e.g. inflated or smoothed) surfaces or relying on manually placed landmarks, provide some improvement but suffer from limitations including increased computational complexity and ambiguity in landmark placement. This paper proposes a method for dense point correspondence on shape ensembles using geodesic distances to a priori landmarks as features. A novel set of numerical techniques for fast computation of geodesic distances to point sets is used to extract these features. The proposed method minimizes the ensemble entropy based on these features, resulting in isometry invariant correspondences in a very general, flexible framework.
Figures




Similar articles
-
Robust anatomical landmark detection with application to MR brain image registration.Comput Med Imaging Graph. 2015 Dec;46 Pt 3(0 3):277-90. doi: 10.1016/j.compmedimag.2015.09.002. Epub 2015 Sep 25. Comput Med Imaging Graph. 2015. PMID: 26433614 Free PMC article.
-
Geometric correspondence for ensembles of nonregular shapes.Med Image Comput Comput Assist Interv. 2011;14(Pt 2):368-75. doi: 10.1007/978-3-642-23629-7_45. Med Image Comput Comput Assist Interv. 2011. PMID: 21995050 Free PMC article.
-
Group-wise FMRI activation detection on corresponding cortical landmarks.Med Image Comput Comput Assist Interv. 2013;16(Pt 2):665-73. doi: 10.1007/978-3-642-40763-5_82. Med Image Comput Comput Assist Interv. 2013. PMID: 24579198
-
Robust anatomical landmark detection for MR brain image registration.Med Image Comput Comput Assist Interv. 2014;17(Pt 1):186-93. doi: 10.1007/978-3-319-10404-1_24. Med Image Comput Comput Assist Interv. 2014. PMID: 25333117 Free PMC article.
-
Shape registration by optimally coding shapes.IEEE Trans Inf Technol Biomed. 2008 Sep;12(5):627-35. doi: 10.1109/TITB.2008.920798. IEEE Trans Inf Technol Biomed. 2008. PMID: 18779077
Cited by
-
Benchmarking off-the-shelf statistical shape modeling tools in clinical applications.Med Image Anal. 2022 Feb;76:102271. doi: 10.1016/j.media.2021.102271. Epub 2021 Oct 26. Med Image Anal. 2022. PMID: 34974213 Free PMC article.
-
Hierarchical particle optimization for cortical shape correspondence in temporal lobe resection.Comput Biol Med. 2023 Jan;152:106414. doi: 10.1016/j.compbiomed.2022.106414. Epub 2022 Dec 7. Comput Biol Med. 2023. PMID: 36525831 Free PMC article.
-
Establishing Surface Correspondence for Post-surgical Cortical Thickness Changes in Temporal Lobe Epilepsy.Proc SPIE Int Soc Opt Eng. 2021 Feb 15;11596:115960Y. doi: 10.1117/12.2580808. Proc SPIE Int Soc Opt Eng. 2021. PMID: 34531630 Free PMC article.
-
Computational Shape Models Characterize Shape Change of the Left Atrium in Atrial Fibrillation.Clin Med Insights Cardiol. 2015 Aug 26;8(Suppl 1):99-109. doi: 10.4137/CMC.S15710. eCollection 2014. Clin Med Insights Cardiol. 2015. PMID: 26380559 Free PMC article.
-
Hierarchical spherical deformation for cortical surface registration.Med Image Anal. 2019 Oct;57:72-88. doi: 10.1016/j.media.2019.06.013. Epub 2019 Jun 29. Med Image Anal. 2019. PMID: 31280090 Free PMC article.
References
-
- Lorenzen PJ, Davis BC, Joshi S. Unbiased atlas formation via large deformations metric mapping. In: Duncan JS, Gerig G, editors. MICCAI 2005. LNCS. Vol. 3750. Springer; Heidelberg: 2005. pp. 411–418. - PubMed
-
- Davies RH, Twining CJ, Cootes TF, Waterton JC, Taylor CJ. 3D statistical shape models using direct optimisation of description length. In: Heyden A, Sparr G, Nielsen M, Johansen P, editors. ECCV 2002, Part III. LNCS. Vol. 2352. Springer; Heidelberg: 2002. pp. 3–20.
-
- Thompson PM, et al. Mapping cortical change in alzheimers disease, brain development, and schizophrenia. 2004 - PubMed
Publication types
MeSH terms
Grants and funding
- U54EB005149-01/EB/NIBIB NIH HHS/United States
- R01MH070890/MH/NIMH NIH HHS/United States
- 8P41GM103545/GM/NIGMS NIH HHS/United States
- P30 HD003110/HD/NICHD NIH HHS/United States
- P41 GM103545/GM/NIGMS NIH HHS/United States
- R01 MH091645/MH/NIMH NIH HHS/United States
- R01MH091645/MH/NIMH NIH HHS/United States
- 5P41RR012553/RR/NCRR NIH HHS/United States
- U54 EB005149/EB/NIBIB NIH HHS/United States
- P30 HD03110/HD/NICHD NIH HHS/United States
- P41 RR012553/RR/NCRR NIH HHS/United States
- R01 MH070890/MH/NIMH NIH HHS/United States
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical