Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2014 Jun 13:105:107-20.
doi: 10.1016/j.jprot.2014.02.022. Epub 2014 Feb 28.

Comparative proteomics reveals proteins impacted by nitrogen deprivation in wild-type and high lipid-accumulating mutant strains of Tisochrysis lutea

Affiliations
Comparative Study

Comparative proteomics reveals proteins impacted by nitrogen deprivation in wild-type and high lipid-accumulating mutant strains of Tisochrysis lutea

M Garnier et al. J Proteomics. .

Abstract

Understanding microalgal lipid accumulation under nitrogen starvation is of major interest for biomass feedstock, food and biofuel production. Using a domesticated oleaginous algae Tisochrysis lutea, we performed the first comparative proteomic analysis on the wild type strain and a selected lipid over-accumulating mutant. 2-DE analysis was made on these strains cultured in two metabolic conditions, with and without nitrogen deprivation, which revealed significant differences in proteomes according to both strain and nitrogen availability. Mass spectrometry allowed us to identify 37 proteins that were differentially expressed between the two strains, and 17 proteins regulated by nitrogen starvation concomitantly with lipid accumulation. The proteins identified are known to be involved in various metabolic pathways including lipid, carbohydrate, amino acid, energy and pigment metabolisms, photosynthesis, protein translation, stress response and cell division. Four candidates were selected for possible implication in the over-accumulation of lipids during nitrogen starvation. These include the plastid beta-ketoacyl-ACP reductase protein, the coccolith scale associated protein and two glycoside hydrolases involved in biosynthesis of fatty acids, carbon homeostasis and carbohydrate catabolism, respectively. This proteomic study confirms the impact of nitrogen starvation on overall metabolism and provides new perspectives to study the lipid over-accumulation in the prymnesiophyte haptophyte T. lutea.

Biological significance: This paper study consists of the first proteomic analysis on Tisochrysis lutea, a non-model marine microalga of interest for aquaculture and lipids production. Comparative proteomics revealed proteins putatively involved in the up-accumulation of neutral lipids in a mutant strain during nitrogen starvation. The results are of great importance for future works to improve lipid accumulation in microalgae of biotechnological interest for biofuel production. This article is part of a Special Issue entitled: Proteomics of non-model organisms.

Keywords: Biotechnology; Lipid; Microalgae; Nitrogen; Proteomic; Selection.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources